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S _ PREFACE ;

T e .
This dotument presents a series of papers describing issues “in edu-

cational heasurement The first, oaper "A S1mp1ecMode1 for D1agnost1c

Testing When There Are Severa] Types of M1s1nformat1on," d1rect1y addresses '

o
the d1agnost1kr1ssue 1t descr1bes a S1mp1e latent tra;t model for -testing,
. B ]
examines use of erroneous aTgor1thms, and j1lustrates the derivation of" an S

[y
T

opt1ma1‘scor1ng ru1e for multiple choice test’ items. . - oot .‘
The second paper, "Measuring Mental Abilities w1th Latent §tate Mode]s,"

has three goa]s 1) to review the latent state models that have been pro-,

posed for measurind aptitude and achievement' 2) to outline the measurement

problems that can now be solved w1th latent state mode}e’—ard 3) to d1scuss
9 v S
how latent state and latent trait. mode]s are related.

The th1rd paper, "Strong True Score Theory," rev1ews true 'score mode]s

.

in 11ght of various assumpt1ons about guess1ng It JS an 1nv1ted\paper to

3

v° . \ .
f~appear in an encyc]oped1a for statistics. - , oo _'” N ;(

The fcurth paper,'“Approx1mat1ng Mu1t1var1ate D1str1but1ons," suggests
a s1mp1e‘approx1mat1on of mu1t1var1ate d1str1but1ons.‘ The suggested method-
is compared'with severa1~other approXimeﬁjons These compar1sons 1nd1cate
that the new approx1mat1on nearly always gives better resu]ts

The final. paper, “Uanased Est1mat1on in a- CTosed Sequent1a1 Test1ng

Procedure" prov1des an opt1ma1 11near est1mator of the proport1on of items -

within an item doma1n that an exam1nee woqu anwer correct]y Af every 1tem

: e
e \

were attempted
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AABSTRACT I .‘4._.._,_____.-..‘., .. - AL

In diagnostic test1ng one purpose of a test m1ght be ‘to determ1ne

-

whether an exam1nee has acqu1red the appropr1ate sk111s for so1v1ng

certa1n types of prob1ems, or whether the exam1nee is us1ng an erroneous

ev_.'—-s& e

la]gorithm In ‘the 1atter case it is a]so desired to determ1ne wh1ch of L
severa] erroneous a1gor1thms is being used so that remed1a1 tra1n1ng €an,
be g1ven B1renbaum and Tatsuoka (1982) recent]y 111ustrated that when
testing e1ghth grader: on the add1t1on of s1gned numbers, exam1nees m1ght.
indeed be app1y1ng one of severaT erroneous a]gor1thms, and more recent]y
they reported resu]ts on a scor1ng procedure for this s1tuat1on This '
,paper descr1bes a simple latent c]ass model for hand11ng the 1tems in

3

Birenbaum and Tatsuoka; included is a,descr1pt1on'and.1;1ustratjon of

at

"how to derive the optimal scoring ruie when mu]tip]e.choice test items

are used. .



Tp ot

’Birenbaum and Tatsuoka. (1982)0provide an Tnteresting example of the :
-need to measure and c1ess1fy examinees accord1ng to the type of m1s1nfor—
-mat1on they ’ have re1at1ve to a part1cu]ar skill. They were spec1f1ca11y
fconcerned.nlth.test1ng the add1tjon of 'signed numbers, but it is evident
' thatfsimilar.orobTems occur in many.situations. As birenbaum.and'Tatsuoka '

point out examinees'm{ght be using one of seyeral erroneous algorithms. |
when respond1ng to theSe items. They described three algortthms.that
ware actually used by examinees, and since they o]ay an important role o

a

here they are br1ef1y rev1ewed ,' . o - )

“The first erroreous algor1thm was treat1ng parentheses’as'mean1ng
abso]ute:va]ue."Thus 7+(-3) wou]d resu]t in an -answer -of 10. The second
aTgorith "was,to.add the two numbers and take the sign of the number hav—
~ing the ?\rgest absolute va1ue For exampTe,l lf asked’ to compute 3+ -7,
the exam1nee adds 3 and 7 ,and because 7>3 a negat1ve s1gn is added y1e1d-
F1ng -10 The third erroneous algor1thm nas to. add the two numbers when
‘they had 'different s1gns, and to put a plus‘sign in the result. For example, f

- 3+ —7 10 accord1ng to th1s ru1e If the two numbers have the same s1gn,
-the student takes. the1r d1fference and puts the common sign in the result.
:For exampTe, (-8)+(-4) =-4. Tn1s 1ast algor1thm resu]ted firom the student '
»m1sunderstand1ng how to use the number line as it was exp1a1ned by the . ‘
teacher Table 1, taken from B1renbaﬁm and Tatsuoka (1982) shows severa]

r

} add1tion prob]ems and the resu]ts arr1ved at accord1ng to the three erron- _

eous algor1thms Just descr1bed "Note that different a]gor1thms can’yield

the same answer, and in some cases even the correct response
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B{renbaUm and'Tat‘uoka (1962, 1983) argue for ‘the need to measure

5

m1s1nformat1on and to determ1ne the type of m1s1nformat1on that a student

has. In +he1r wore recent article (B1renbaum & Tatsuoka, 1983) they

-compared two- scor1ng algorithms for measur1ng m1s1nformat1on, but no results

r

were given on determ1n1ng the accuracy of either procedure, and 1ndeed

/

ne1ther procedure was developed with- the goal of f1nd1ng the opt1ma] scora
1ng procedure for 1dent1fy1ngkwhethgr an erroneous a]gor1thm is be1ng used.
(They compared coeff1c1ent a]pha for the two scor1ng procedures, but this
is not a direct measure of the accuracy of the test as’ 1t 1s def1ned be]ow )

The goal in this paper is 'to 1]1ustrate~how an opt1ma] scor1ng pro-

.cedure can be derived for the s1tuat1on rons1dered in Birenbaum and Tatsuoka

(1982). As w111 become';%1dent the process used for determ1n1ng the opt1-'

~ mal scoring rule can be eas1]y extended to othnr s1tuat1ons, but to keep

the 1]]ustrat1on as s1mp]e as poss1b1e, attent1on will be restr1cted to the

,1tems in Tab]e 1. An add1t1ona]'advantage of the resu]ts tc be given 1s v

that expressidns\are also derived for the probab1]1ty of correctly determ1h—ﬁw

ing the a]gor1thm being used by an examinee. ) E‘ A
. o,

Befor@ cont1nu1ng,/some comments shou]d be made regard1ng resu]ts

) s1m11ar to‘the deve]opments ‘made here F1rst the problem be1ng exam1ned

s s1m1]ar to one considered by Macready and Dayton (1977) It 1s\ea51]y B

seen though that the latent structure model they used 1s 1nappropr\ate for the '

il
‘ prob]em at hand. w11cox(1982a) proposed a model for measuring m1s1nfor-

' nat1on via an answer-unt1] correct scoring procedure; but this mode1\1s 1n-

\

i adequate here as.we]vauThe reason is that his model can @935“"9,0"]¥‘°"€ﬁ

. & t . . . - ;
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type of misinformation, and herthhe problem is contending with three
£rroneous aigorithms Dayton and Macready (1980) as weli as”GoodmanJ(1974)

descr1be very geaera] 1atent c1ass mode]s that could be app11ed, and Bergan

— »

et a1 1980’/dgserfbed an appropriate scor1ng ‘procedure. However, these

mode]s/requ1re 1terat1ve techn1ques that may be unnecessar11y comp11cateﬂ

g

In part1cu1ar, Dayton and Macready's mode] requires 1terat1ve approx1mat1ons

2%

of the Nux1mum 11ke11hood est1mates of théfgzrameters, and for theoret1ca1
- reasons it is best to avoid these est1mat1OQ.techn1ques whenever pussible
~ (Ka1e 1962a, 1962b).. The problem 1s,determ1ning whether 1terat1ve esti-
‘ mation-procedures converge to the maximum likelihood~estimates that they
are intended to approximate. It appears that they usually do but. there is

no guarantee that this will a1waysnbe the case. (For a s1tuat1on where
. ’ . crness

iterative techniques can converge to inapproprjate va1ues, see Wilcox, 1979.)
Thus, anﬂimportant aspect of ‘this paper is that'by making Eertain assumptions

about, how examinees behave when tak1ng test 1tems, which are mot1vated e

by a pub11shed emp1r1ca1 study descr1bed below, a re]at1ve1y s1mp1e model

resu1ts where exp11c1t maximum 11ke11hood estimates_ of the parameters are
A} 9

- available, and these est1mates can be used to so]vn the measurement prob- - : .

1ems descr1bed above .

2:> B The Model and Its Assumpt1ons o S v

o

- Itis assumed that mu1t1p1e cho1ce test 1tems are used, and that every

kd -

1tem has t a]ternat1ves Th1s 1ast assumpt1on is made pr1mar11y for notat1ona1

conven1ence Using mu1t1p1e choice 1tems 1ntroduces: the prob]em of guess-.

» 3

~ing, but th1s seems to be eas1er to handle, from a stat1st1ca] po1nf ‘of v1nw,
S C B o ’
f s

. .
.. . .
S : . K .f R L
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< than is the prob]em of care]ess errors wh1ch is one of the erroneous

<&

algorithms- also considered by B1renbaum and Tatsuoka (1082) Here it

is assumed that careless errors occur w1th probab1]1ty close to zero

sc that for practical purposes this error can be 1gnored As,exp]a1ned
in the -introduction, only the three erroneous a]gor1thms 1n Birenbaum and

Tatsuoka will be cons1dered, plus, of course,- the a]gor1thr ‘of random Sy

guessing Thus, for the popu]at1on of exam1nees to be tested, it 1s

. \ L

assumed that every exami nee be]ongs fo-one of five mutua11y~exc]us1ve

]atent states: they know how to so{ve the 1cems, they guess at random,
or they apply-one of the three 1nconrect a]gor1thms described above( ‘Itj'
is. a]so assuTed that if an examinee 1s\uS1ng e correct a]gor1thm, the

+ correct response is a]ways chosen, and if.one of the three erroneous al=
gorithms is used, an examinee will always choose a correSpond1ng response
For. comments about th1s ]as umpt1on, see sect1on 6. For the moment JV
it is also. assumed that every 1tem has a di tractor that is con<1stent

with each of the erroneous a]gor1thms Th1s rescr1ct1on cou]d be re]axed

if des1red when app1y1ng the procedure out]1 ed 1n
sect1on 5. Another assumption is that there are no- examinees who have,

part1a] 1nformat1on - Although emp1r1ca] resu]ts 1nd1cate that part1a]

" is also some emp1r1ca] ev1dence that when dea]1ng~w1th m1s1nformat1on,
1f may be reasonab]e to assume that no examinees hLve part1a] 1nformat1on
(w1]cox, 1982a) gt is not be1ng suggested that th1s assumpt1on be taken .

for granted on]y that it m1ght be reasonable in pract1ce-—sect1on 4 dis-

. . . ) ®oL
. @‘ ) . \"'~

P s . -

. . , - 10

O v Co - ) : AR

A\ B
1nfonmat1on ex1sts_Jn -some. s1tuat1ons (e Gos: Coombs et al. 1956) ‘there =~



. . - . o -e_ . //
cusses how‘certain imp]Lcations of the:mode1 can be-testedb and this,test
should always be carried out
| .The next step 1s to f1nd n 1tems that make it poss1b1e to d1st1ngu1sh
‘between any “two exam1nees hav1ng a different erroneous algor1thm In
add1t1on, these 1temsnshou1d ‘include at least one item ‘that w111 resu]t

in at 1east one 1ncorrect response when aﬁ erroneous algor1thm is being
‘used. These 1ast_two conditions are c1ear]y ‘satisfied for tzg itams in
Table 1. In fact on1y the first. three Jdtems are needed

o

**Let a 1 and 0 represent a correct and incorrect response to an- 1tem,
,respect1ve1y Cons1der an exam1n°e respond1nd>to the’ f1rst three items
in Tab]e 1 If the‘flrst erroneous algorythm 1s used the resulting re-
spgnse pattern w111 be (1, 0 1) For the second erroneous algor1thm, the
response pattern will be (O, 0 l), and the third erroneous, a]gor1thm will

_give (0,0 0) - Thus, if an E§am1nee has response pattern (1,0,1), for
examp]e, the assumpt1ons of. the model rule out the poss1b111ty that the
exam1nee 1s using one of the other two erroneous aTgor1thms, and so the

. examinee is e1ther app1y1ng.the f1rst erroneous algorithm or 1s‘guess1ng\‘

-

at random. : R
Two practical»problems will be considered The first is estimatdn§~

the proport1ons of exam1nees among a popu]at1on of exam1nees who be]ong

to the various’ 1atent states. The. second prob]em is d1st1ngu1sh1ng be- f"

tween those examinees who are guess1ng at random, and those be]ong1ng té |

orié of the four other 1atent c1asses. As will become ev1dent a so]ut1on

' to .the f1rst prob]em can be useful when solving the" second
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Let ¢ 'be the preportion of examinees who know the correct aiéoritnm,

and let L (i=1‘2 3). be the propdrtion who are using the ith erroneous

v a]gorithm Finall$, let %y be the proport1on of examinees who guess atJ

random, and ]et Pijk (1 1 1; j= 0 1; k=0,1) be the probab1]1ty that a ran-

.. domly samp]ed examinee wou]d give the response pattern (i,3,k). For ex-

ample, P101 is the probab1]1ty that a random]y sampled examtnee weu]d,

give a correct, incorrect and correct response to the first three_ftems

"_in Table 1. From the assumptions a1ready described, it follows that

l

£

Lo ;4";3’;2’C1 and ; .are | -- ‘. | ¥

Cbyqp = ot gg(1e) ot L. T (2.1)
P11 = z;4(1/t)‘2('i-1/t)+z;‘1 o & o '(vé.z)
5’001 s o (1/8)(1-1/8) 54, N O]

" Pooo ='z;4(1'-1/t)3+'c3 " . (2.4)

\ 110" o™ uvia-Un C ,('2‘-5“a) -

P1og” Popo = Sa(1/t)(1- 1/t)? e T "~ (2,5b)

. a /

For N randomly samp]ed exam1nees, let x; i3k be the number of" exam1nees
AF
"hdving response pattern 1,3 k), and iet Qjy be the common value of P110° p01]
and ]et q2/p100—p010 be the common value of p100 p010 From standard re-
su]ts on the mu]t1nom1a] d1str1but.on in conJunct1on with resu]ts in Zehna
(1966 dJ (x110+x011)/2N and. q2 (x100+x010)/2N are maximum 1ikelihood

estimates of 9, and Py It fo]lows that max1mum ]1ke]1hood estimates of
\ e

e . = |
eGP a-yn gt ey e s (28
e - | 12 .
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< oz 'x111/N—1;4/t T R €22 )
o .W,Z:::T_Heemwh o '
*KXIOI/N-C4(1 l/t)/t _ S . S -(.‘2-8)‘
and ,_\ L ' . . o S
. \ E . u” . o 3 R
£y = xOOO/N—z;4(1 1/t) u o | (2.10)
B I v i

Making Decisions-Abdut'an.Examinee's Latent_State.

Suppose an exam1nee g1ves the response pattern 1, 1 1). “Then accord-

ing.to the mode1 the exam1nee is e1therj

choos1ng responses at random, the prob]em is determ1n1ng which is true

using gge correct algorithm qr . .

The simplest so]ut1on is to exam1ne the probab111ty of observ1ng the re-
®

sponse pattern (1 i, 1) if the exam1nee {s guess1ng at random; th1s is Just _

t 3,assum1ng the responses ar ependent of one dnother. If t ? Js‘small,

it m1ght be dec1ded that the'exam1nee 1s no essing, gut;this approach

Ihen the optimal

\\\\\\

fscor1ng ru]e would be to always decide an exam1nee does not know,™and to

| can be unsat1sfactory To 111ustrate why, suppose z=07

’ conc]ude therefore that an examinee is guess1ng at random when the response
< -

pattern~(1 1 1) is g1ven

“ L. r
o

The quest1on ar1ses as to whether the opt1ma1 ru1e for c 0 is also

opt1ma1 when z>0, and 1f s0, how far away from zero can g be before some

=

other rule shou1d be- used There is-also- the prob]em of determ1n1ng the

~overa11 accuracy of the dec1s1on ru]e be1ng used A so]ut1on to the First

prob]em is to dec1de an exam1nee qs’ u51ng the correct a]gorithm 1f and

T




only if the responsé pattern‘(l,l,l) is given and '
- o - M

b ;4t»" <g. . - | - (2.11)

This role is derived’by notino that the jofnt probabiTity of A random]y
samp11ng an exam1nee who gLesses at random and who gives the response '
(1,1,1) is Just-z;4 3. A]so the joint probab111ty of samp]1ng an examinee
‘ who knows. and who gives’ the response pattern (1,1, 1) is z¢. Thus, 1f .
,;<c4 3 dec1de the examinee is guess1ng at random 0pt1ma] propert1es of
this decision rule (g1ven in a more genera] context) are descr1bed by
" Copas (1974). . e - R

A similar approach can be Used to derive decision rules for determin-

.

1ng Whether an exam1nee is us1ng a part1cu]ar erroneous a]gor1thm Suppose,-

for example, the. response (1,0,1) 1s given. Then accord1ng to the mode]
: the exami nee e1ther is us1ug the first. erroneous a]gor1thm, or is guessing
at random The\opt1ma] rule is to decide’ the examinee is us1ng th erron-

t P

'eous a]gor1thm if and only if

gt iaehy @

where/t (1 -1/t) 1s the probab1]1ty of the response pattern (1 0 1) from an’ .k
\‘t examinee guess1ng at random Thus, this is the same rule as (2. 11) except _
that’; has been rep]aced by” cl.and t -3 has been rep]aced by the probab1]1ty

S of the response pattern (1,0, 1) from an exam1nee guessing at random. Snm1]ar
mod1f1cations are made'for the other two response patterns correspond1ng to

the other two erroneous a]gor1thms As for the response patterns correspond-

ing to equatTonS'(Z—S)——STmpfy—deﬁade—%he—exam+ﬂee—4s—guess1ng at random.

-
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\’: Extens1ons to n Item Tests Hay1n€/k Latent States._ o

=

\

The baS1C process used to ana]yze the f1rst three 1tems 1n Table 1

. 1s eas1]y extended to n item= 1tests/1/vo]v1ng k latent states Cons1der -

-

any response pattern A where A/Ts/a vector of 1! s and 0's. Let Ck be the

<

Jo1nt probab1]1ty of observing A and having. an exam1nee i the kth ]atent

?tate, k=1,...,K. Then decide that an examinee is in the ith ]atent.state

if C,=max C,. Another illustratin.is given in’section 5. As already
‘mentioned, when trying to c]assify an exaninee as beTonging"to one

" of two 1atent states, th1s ru]e is known to have certain opt1ma] prop- -
erties (Copas, 1974) . If an. exam1nee g1v1ng response A can be]ong T

to more than two latent classes, the ru]e used here is the same as

» the ongeysegmbxmBergan,et”all_(l980aamkut.theuopt‘mal properties

© discusséd by Copas (1974) have not been éstablished.

&

-3 - The Probability of a Correct Decision

-

hethrning to the ana1ys{s of'the-first three items in Table 1, suppose

the procedure in the previous section haB been app]1ed, and that a scor1ng

a

rule has been determ1ned The next prob]em is-determining whether there is

~ N\

a h1gh ]1ke11hood of making a correct dec1s1on _about the 1atent state of a
-randomly samp]ed exam]nee If th1s probab1]1ty is Judged to be too ]ow, the
test mught be mod1f1ed as described below Again to exp]icate the-process,;
only the‘KeS.]atent states of " sect1on k will be consideredc,

. I

i

L



Suppose the dec1s1on rule in Tab]e 2 is to be used Then for a

'random]y samp]ed exam1nee, the probab1]1ty of a c0rrect dec1s1on (PCD)

is just
r + 3] +: Z, + z3 + B;A ' . v . (3.1)
where

B =2t Pt it
o . , : .
. Suppose instead that for response pattern.(O,Q,O) it is deéided an exarf-

inée is_guessing at random. Then (3.1) becomes

ftg + Cl + Cz + CC4 . - ’ (3.2)

- where C=B¥t'3'

Simi]ar‘adJUStments can be made if the decision rule in
Tab]e 2 is mod1f1ed in any way ‘ _ =
The genera] techn1que in determ1n1ng an e(‘ress1on for, the PCD is to
f1rst derive.an express1on for—the—probabllltx_that for an exam1nee guess-
ing at random, the obse§Ved response pattern will correspond to one where
the decision is made that the exam1nee is’ 1ndeed.guess1ng at random. Con-
‘ S1der, for examp]e response pattern (1,1,0). Given that the exaninee 1%'1
guessing at randem, the probab1]1ty of th1s response pattern is _
'(t'l)(t'l)(l t'l) Repeating this process for every response, patgern for
A-wh1ch it is decided that an exam1nee is guess1ng at random and add1ng the
',resu]ts y1e]ds the coefficient for ;4 in the express1on for .the PCD. lFor
"¢ the dec1510n ru]e in Tab]e 2, there are four such response patterns, .and
they,add to B in (3. 1) For: exam1nees in the other 1atent states, the

response pattern is determined w1th probab1]1ty one, and so no coeffic1ents




“
1 - ) ) []

/[ are needed for them in (3.1). If ‘the PCD is Judged to be too small, "ad-

. d1t1ona] 1tems or ‘more d1stractors can be used and then the process de-

P =
» . - B0

scribed above .is’ app]1ed aga1n s e -
.// ‘ S . . o ‘ . : -
. o BN P C . ' .‘
o ‘ . ) ‘ ’ Q’ . :
4r L Comments About Testing. the Model
f ) ’ . g- . . ~ .'u R . i . .

.A’partfa] check on the model in séction 2 is to test (2;55LWith the
'usua] s1gn test In the more generaﬁ case, 5uch as in'section. 5, it ist

~necessary .to test for. equa] ce]] probab1]1t1es among severa] ce]]s, and

1 a

b
,th1s is- usual]y accomp]1shed w1th a chi- square test The purpose of th1s

. sect1on 15 to make some brief comments about this weTl knpwn procedure
¥

F1rst exact tests “for, equ1probab]e cells can be made when N, the |

7

number of exam1nees, is 1§r; than*or equal to 50 (Sn1th et al., 1979

o
G

Katt1, 1978) In cases where a ch1 square d1f%r1but1on Tust be used to -

<

R get approx1mate cr1t1ca1 va]ues, it appears ﬁhat a better approx1mat1onf
of the Lritical va]ues can be had by app]y1ng resu]ts 1n Ni]cox (1982b).

. Second a practica] problem-w1th test1ng for equ1probab1e ce]ls is -
that the null hypothesfs m1ght be reJected even when the ce11 probab1]-r
1t1es are nearly equa] 1n va]ue \uOf course ‘this is. particu]ar]y 11ke]y
to happen when N 1s ]arge Accord1ng]y, 1f the chi- squre test 1s s1gn1f-
“icant, it wou1d segn prudent to est1mate the overa]] 1nequa11ty amo;g '
the ce]l probab111t1es, and a deta1]ed d1scussfon about how this can ‘be

done can be found in W1Tc0x, CL\ff and Embretson (to appear) R

- FrS ) PR
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Cpl L ﬁﬁ: o ”"‘An'Alternative Approach

~ ” . ) ., . ,’. . f f: i N

ro )

o In.some cases~it may be’ "useful, to take 1nto account the actua] re- |
sponse chosen by an examinee rather than 11m1t1ng the ana]ysﬁs to the
pattern of correct and 1ncorrect responses By doing thts, fewer items
may be required in order to obta1n an accurate test. ‘ u

 As an 1]1ustrat1on, suppose 1tems 1 and 5 in Tab]e 1 are to be used

If the observed responses are -4 and‘-32, respectively, the examinee was

.

feitber guessing at rahdom or was~using,ﬁhe'correct'a]gorithm. Thus:

Pr(-4,-32) =g+;4(t'1)(t‘l). As a more specific éxample, suppose there:
are t=3 a]ternat1ves for both items 1 and 5 Jdn Tab]e 1. Then ©

- * 1 PI"( 4, "32) ;+C4/3

where the symbo1l g is 1ntroduced for notat1ona} conven1eﬁce In a similar

manner the probability of all possible response patterns-can be written»>
in terms of the z's-and they are | .
g,=Pr(-4,32) =g +5,/9:

Pr(-4,-1)=g,/9 - -

Al E3 =
B = Pr(—10.32)éc4/9
£ = Pr(‘10»‘32)=52+;4/9' | o S ‘.";{_
= Pr(-10,-14)= :4/9 ’
. !
"‘/ | 7 Pr‘(lO ,32)= C4/9 | .'
_— - , A
T Eg= Pr(lOs-32)éc4/9 | o
(\grth(&i4)=‘3+‘4/9 : » C B
é S S~ . ' o ~
—



o set of equat1ons Just given 1mp1y that

.. is a maximum 1ikelihood estimate of I Hence

- and

H ’ . . . B ; - ’
1 . X - P fadl

" Observe that E3.= £ = £g = & = £g» and so' the commentsjin'section 4

-
.

Capply. . P

% Y I

Let g be the usua] max1mum 11ke11hood est"nate ef g Ihen the

- . e

RS ,4 9(€3+€4+E6+57+€8)/5

c A “n

C3 = Eg;"f 24/9
g = 85 7 54/
A e e T e S

5‘2 "'\C4/'9 .o . . ','“ Lo -3 E

C=€1"C4/9.
are maximum 1ike1ihood'estimates of z3, iz,‘;l and ¢ respective]y.” Thus,

only -two items were needed to estimate the‘proportion of examinees in the

~ &

five 1atent 'states.:
' " Next. suppose the z's are known or that they have been est1mated and

. that a scor1ng procedure must be established. Cons1der. in part1cu1ar the |

Bl

Voo

' response pactern (-4, -32). The Jo1nt probab111ty of us1ng the correct

a190r1thm and g1v1ng the response pattern (-4, -32) is just z. .The joint
probab111ty of guess1ng at random and g1v1ng the response pattern (-4, -32)

is c4(t (t 15- T4/9. Thus for the response pattern ( 4, -32), if

_ ;>;4/9 dec1de an exam1nee is using- the correct a1gor1thm If £<g,y/9, de-

cide the exam1nee 1s guess1ng at random The 1mportant po1nt here is that

§



) , \v. \ , | . -
.the analysis is basically the same as it was in section 2, Of course the
\other response patterns can be ana]yzed 1n ‘the same manner. An expression'

el
&

for the PCD can a]s% be determined once a scoring Tuie has been settled

» upon. The details are basivally Lhe same as before, and o) further comments

v

are omitted. ' 4 . - -
C . "' . E - 4 | ‘ ~ ",--/.-_a’

T

6. . -  ,,:/>eaﬁ§E§ﬁ}g‘Rémafg§
" In section 2 jt_was assumed that every jtem has an alternative that.’
_ is consistent with at least one of the a]gorithms thatzmight be used by
- an oxaminee It snou]d be noted that if computerized testing is possible,
an, adaptive test cou]d be administered that relaxgs this assumption .Sup-
pose, for example, an item is given and that the. observed response ru]es A
out the possibi]ity that an examinee ‘is using the first erroneous a]gorithm
Then, the next item cou]d be chosen based on the assumption that the exam-
inee is not-using this a]gorithm. That is, the distractors need not in-
w'clude an. a]ternative ‘that is‘consistentrwith'theufirst erroneous a]gorithm.
‘AWhen measuring comp]ex ski]ls, this approach cou]d be important -
~One of the assumptions of the mode] was that ‘there is no care]essness
That is, if an «xaminee is using a particu]ar aigorithm to arrive at an 4
- answer, -the a]ternative corresponding to this a]gorithm wii] always be
i chosen. - In some cases it might be necessary to inc]ude the possibi]ity \

that an examinee might care]ess]y choose an a]ternativethatis inconsistent

with the algorithm being applied. The mode]s used here are easi]y extended to
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hand]e\<h1s prob]em but. 1terat1ve est1nates of the parameters wou]d be needed

*.One way\to solve this e\tqmat1on problem is to proceed as outlined in-
3 é'

Goodman 61979) Opce\the paramgters are’ est1mated a scor1ng rule can’

be der1ve§ as was out]lned above. L S -

Another 1mportant pp1nt is that the scor1ng rules described here -

\

are based on ‘the assumpt1on that ;he goal js to max1m1ze the number of

exam1nees for-WhOm a c0rrect dec1s1on 1Swmade about the1r ]atent state
i .
This could’ mean!\however, that an examinee’ tou]d get an 1tem r1ght and

yet it wou]d still be conr]uded that an erroneous a]gor1thm was be1ng

fr
" used. . If this possibility is obJect1onab1e some other scoring rule

_gshouid be considered{ However, the results g1ven here are still valuable
‘because they yield-a methgd of assess1ng the accuracy ‘of a tegt.1f a con- .
vent1ona] scoring rule is app11ed and the suor1ng ru]e descr1bed here might

) ‘be usefu] when eva]uat1ng the effect1veness of. a part1qu1ar 1nstruct1ona1

@

‘program. I R
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\ TABLE 1 ¢
Problems 'and Responses \'Ac':cording to-the Three Erronéous
Algorithms in Birenbaum .and Tatsuoka (1982)
- '/’/
Problem No. ‘»~ Erroneous Algorithm
1 2 3
1. 34 :7=:4 -4 . -10 10
2. T+ (-3) =4 10 10 10
3_' -6 + -15 = -ZVI % -21 -21 -9
4, -6++15=9 9 21 21
5. (-23) + (-9) = -32 32 .-32 -14
,. . :
22



. "1 .
5‘ ’
TABLE 2 *
q ’ .
. 'A'Déhﬁsion Rule for the First Three Items in Table 1.
/f * B g
I(
Response Pattern of o :
Corrects and Incorrects - Decision
: i - ' ) : J T v S ) g
111 - ~ Uses the correct algorithm T
110 - Guessing at random A
101 : .' " "Uses the first erroneoué algorithm
011 - . " Guessing at random .
. 100 . I Guessing at random -
010. . - Guessing at random B 4
1001 B 'Us%g the second erroneous algorithm '
- 000 ‘ Uses the third erroneous algorithm
o
kS
- . |
\ . V
‘\) ° -
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The three goals in th1s paper are (1) to review the 1atent state

mode]s that have been proposed for measur1ng apt1tade ana acn1evement
£

(2) to out11 e the measurement problems that can now be soIved w1th o
']atent state ode]s and (3) to d1scuss -how 1atent state and 1atent ,
trait mode]s are re]ated ‘It is po1nted out that 1atent state and
:'1atent tra1t mode]s measure different th1ngs that are re]ated to one | -

another in a comp11cated fashion.

-

B . . S . . .
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R o INTRODUCT 10N

There are now, four nnterre]ated approaches to measuring aptitude

and achievement that are based on differcnt notions of _true scores. Class-

1ca]_test theory is the bes known approach where ability is defined in N

-~ terms of'a propensity digtribution. The other three are_]atent trait

models, 1tem samp]inaamodelsaband 1atent state mode]s No doubt latent e
state mode]s are the least wel] known One reason for th1s is that ear]y
models made very restr1ct1ve or inconvenient assumptions, and even 1f
the models cou1d be applied, it was unc]ear how to ‘solve the many mea—}
surement prob]ems that arise in practhe (cf. Meskauskas, s, 1976).

Today the sitgation has changed radically, there are now latent state |
mode]s that are re]ative]y easy to use, and empir]cal investigations in-
dicate that the under]yiné assumptions are usua]]y;met, or_that they are
reasonabie approximatiOns of_rea]ity.-.Just as important is that many mea-
,surement probiems-can be-solved'that nere previousiy impossib]e toaaddress.
The three major goa]s in this. paper ‘are to (1), review the various ]atent ,
state mode]s, (2) describe some of the measurement problems that can now
be so]ved w1th°iatent state mode]s, and (3) briefly indicate how latent
trait models, item sampiing mode]s and iatent ciassimodeis are reiated
,to one another. The 1ast goa] is particular]y important because when there '
are errors at the item 1eve] such as guess1ng,‘a11 three models estimate

* different quantitnes that are re]ated to one another in a- compiicated _"f:“;

. 'fashion In fact if a measurement probiem is formu]ated in terms of one}

.”mode] it may be very difficu]t to find a. satisfactory reformuiation of
_’_____________,_.__——-—-—"—‘--——-—-‘~ : ST TR s e B

e . a . . g . . . -
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the probiem in term¢ of another mode]. .This point is'elaborated'be]ow,
Accordingly, it is important'to consider theudifferences among the models
when addressing a part1cu]ar measurement prob]em | o A

It should be stressed that none of the models descr1bed be]ow are

% cons1dered to be a]ways bad or 1nappropr1ate. The position advocated here

1s that an ec]ect1c approach to measur1ng ‘mental ab1}1t1es shou]d be used

\\

That 1s, the choice of a true score mode] should be d1ct\ted at ]east in

part, by the goal of the test, or the type of abz]1ty be1ng est1mated ‘
;; AT that is be1ng sugfested is that d1fferent models are. based on differ-
ent constructs, and so they est1mate d1fferent th1ngs wh1ch suggests
that some mode]s may be~1nappropr1ate in some situations, or that several
models'might be used to’study a test. Forferamp]e,'the type 6? guessing
examined in latent statd mode]s is comp]etely 1gnored in all other’models,
"and so if this type of guessing is deemed 1mportant, a latent state model
shou]d be used, There is a w1despread belief that the guess1ng parameter ‘
in latent tra1t mode]s 1s the same as the not1on of guess1ng in latent
state models, but this 1s not true. - In section 6 an attempt is made at
’exp1a1ning the d1fference o
. The paper is organized as follows: Section 2 brfefly'reViews the
" basic elements of. 1atent tra1t mode]s that w1]] be needed in the paper. -

wSect1on 3 does the same for item samp11ng models, and-some commedts are

.made about how thESe mode]s re]ate to latent trait models Sect1on 4

reV1ews the theoret1ca1 developments in latent class” models that are

‘ spec1f1ca1]y 1ntended for measur1ng apt1tude and ach1evement | Certa1n
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_ N ’ _
aspects of these models were reviewed by Macready and Dayton (1980b)
and so these features will not be discussed heré. Sectjon 5 describes
applications that can not be addressed by other measurement mdde]s. ;

Included are generalizations of item sampling models. Section 6 makes

additional co¢ments on how latent trait and latent class models are re-

. S

- -Tated to one another. In particular, this section discusses the impor-
. tance of guessing in iatent trait mode]s, and if points out that the
type of guessing examined in latent class models is completely ignored |

in latent trait models--even in Birnbaum's three parameter model.
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‘ 2, Latent‘Traft Mode]s", ‘ S T

Latent trait mode]s are d1scussed 1n detail by B1rnbaum (1968) \
Lord and Novick (1968, ch. 16), Lord (1980), and Hambieton et al. (1978) \\
glve an’ exce]]ent review: of this approach: to mental test: theory See '

also, the 1977 special issue of the Journa] of Educat1ona] Measurement

Weiss and Dav1son (1981), and the 1982 spec1a1 issue of App]led Psycho]og-

-

ical: Measurement

Genera]]y, these mode]s express the probab111ty of an examlnee g1v1ng-
a correct response to an 1tem as a functlon of an exam1nee s "abi]ity“ ' |
and certa1n 1tem parameters. For examp]e the Rasch mode] postulates
.that p(e) the probabﬁ]ity a spec1f1c examinee w1th ab111ty level |
8 (== < @ <o) will produce the correct response to a d1chotomous1y‘scored
item, is - L e -
L Rle) = exple - b/ + explo - b)) N ¢ '
where b (the ‘difficulty-level) is a paramgter that characterizes the 1tem.
(See, for example, Nr1ght ]977 ‘Wainer et a]., 1980. )
’ An a]ternative express1on for p(e) is the two parameter norma{
| ogive mode] given by j\ , . o , : T
p(e) = I (t)dt A If ~>t; ,';f'"' . (2 2)
- where ¢(t) 1s‘the standard norma] probab1]1ty funct1on, L = a(e b), and

a is the 1tem "1eve1 of discr1m1nat10n A c]ose]y re]ated mode] s the

Ll

two parameter logistic mode] where,

~_ple) = (1 + exp( 1. 7a(e - b))) | o "(2 3)
,(Birnbaum, 1968 p 400) An even more genera] three parameter modeJ
T s g1ven by L el ‘. ' | ; B et N
p(e) c+ (] - c) egp(J 73\9 -b) A2.4)

- 21 + exp( 7a(e - b)) |




.

where c is the probabi]*mv of a correct response from an exam1nee w1th

Tow ab111ty. In all of the ab0véﬁiodejs, the_symbo]s a, b, and-c
representhpnknown parameters thatvare'estﬁmated wjth the'observed.scores

of a sampTe of examinees. A particularTy imoortant feature‘of latent trait-

mode]s is that once the item. parameters are est1mated it is possible .

\

‘ to construct a test so that the expected observed scores w111 have certain

~

?who has ab111ty Teve1 °-,~,. ':’f IR ,>\3fieﬁﬁf

propert1es that are deemed 1mportant.

Numerous art1c1es on ]atent trait models have been pubT1shed )
However, as prev1ous]y indicated, the roa] of- th:s paper 15 not to summarize
these resuTts. For present purpcses the 1mportant po1nt is the 1nterpre~

| tatdon of p(e) One 1nterpretat1on s that p is the probabi]ity of a
correct response over: repeatedxlndependent adm1n1strat1ons of the 1tem.
Invother‘words, P 1s the examinee's expected obseryed score, where the-
eXpectation.isjdefined in terms of a propensity.distribution . However,
Lord (1980, ch. 15 1974) argues that. th1s 1nterpretation leads* to certain
Tog1ca1 probTems, and so he proposes that one of two other 1nterpretat1ons

be used 1nstead The first imagines a -pool. of jtems aT] of which have

the same item parameters a, b, and c. Then p(9) 1s the probab111ty that

a specific exam1nee with ab1Tity 0 w111 give the correct reSponse to an-

f
1tem randomTy sampTed from th1s 1tem domain. The actual 1tems on a test ‘
wil] typica’]y have d1fferent ltem parameters. and S0 each of these 1tems
wou]d be’ viewed as being sampTed from an 1tem doma1n correSponding to the

vaTues of a. b, and c. f-‘ o 1;’

T———

The second interpretation views examinees. rather than items. as

being randomly sampTed. For an 1tem with parawnters a. b and c. p(o)

V_ 1s the probabiTity of a correct reSponse from'a randonﬂy sampled examlnee
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" Some other basic _assumptions associated with latent trait models
sn&u]d be ment1oned. One\of\these\1s the assumpt1on of local 1ndependence.
Tms means that given 8, responses ;re\wndependent of one another.

Letting p be the va]ue of p(e) for the ith 1tem on\a test, ]oca1 in-

dependence means ‘that if items are scored dichotomous]y, the- probab111ty ’

of y 1tems correct g1ven g is ’- ' ;; : f~ . \\\\\\
n X; - v l-x:'. .* . * LT
flyle) =z py” (1-p) 71 IR (2:5)
' i=1 ~ o v . - . o ,

i
and where the summat1on is over all Vectors (xl, eees x ) such that zx,i = y;

) :where X 1 or 0 accord1ng to whether the 1th 1tem is answered correct;y,

A test of. th1s assumpt1on was recently proposed by Holland (]981) but
it ‘has not yet been app11ed to real data. I "'~;e N .
Another property of the most commonly used latent tra1t modeis 15
"that. they are un1d1men51onal Th1s means that on]y one person parameter,
namely e is ‘needed to determ1ne the probab1]1ty of a correct response
to an item. McDonald (]98]) p01nts out that 1atent tra1c models can be
V1ewed as a non11near factor ana]ys1s mode] w1th on]y one factor (cf. -
Me] Tengergh, 1981). | I |
'~ Another observation will be usefu] later. This is that if all the
ftems on an n-1tem test have. the same 1tem parameters (1 e., the same

{

va]ues for a, b, and c) then (2.5) reduces to- . ,

Hyle), - []’(1 A
- the b1nom1a] probab1]1ty funct1on; where p 1g'£h; common Value of the .
'._.'..;pi,s . _ ,» | : | - S
. Final]y, for mu.tIple cho1ce 1tems. 1atent trait mode]s do not dea]

: w1th the construct "knowing" in any wa d they dea] with fhe probab1]1ty

of a correct response which 1s d1fferent from the probabi]ity of knoW1ng




3. Tten Sampling Models PR L

".\

A third class of true score models 1s.known as 1tem samp11ng mode]s.,--*”

The b1nom1a1 error mcdel is the one most frequentﬂy used a recent rev1ew
L l_

is g1ven by W11cox (198]a), and so on]y its bas1c propert1es w111 be

g1ven here.

IR
._.‘\ .

: < . o PR -
Cons1der a s1ngle exam1nee reSponding to an n—item test One 51tuat10n N

1ead1ng to the binomial error model is where the n 1tems are actually
sampled from some 1arger item doma1n. If € is the proportion of 1tems
the exam1nee wou]d get” correct if. every .tem in the. 1tem poo] were” attempted ﬂ

"
“then theprobab1]1ty of y correct responses is

fivle) =y ”(1 o T a
s U S
(It is assumed that samp11ng is from an 1nf1n1te poo] or f1n1te poo]
with replacement, and that °E remains constant over the tr1als ) In
' many s1tuat1ons 1tems are not randonﬂy sampled and there TS no item
pocl. Thus there 1s no a priori reason for assum1ng (3 1) ho]ds.a It;;~A7[
might seen, therefore, that the binomial error mode] is not really Just1f1ed
" but the po1nt is that 03,;) m1ght give a good f1t to data ' Indeed, the em- B
pirical 1nvest1gat1ons cited by N11cox (19813) suggest that (3*1) will
’ frequent]y give good resu‘ts when addressing various measurement problems
_Note that there'ls al so no a pr1or1 re son for using 1atent tra1t models
(Lord 1980) Aga1n the cruc1a1 quest1on 1s whether the models giVe good
| resu]ts with. rea] data._,ygv"= - R

It might appear that the binom1a1 error nndel is nnre restrictive R

than 1atent trait mode]s 1n the sense that 1f the 1tem'parameters a, b, 'ffjf'

and c are the same for every 1tem, the probabi]ity of y correct responses




o . L 8-
-~ s givehiby {2.6) which is the same form as (3.1). 1In particu]ar,,one might *
*‘conc]ude that g in (3.1) and p.in (2.6) -are the same. _Theygare.re]ated
but in a more comp]1cated fashion. | | . )

Typ1ca1]y, the n items on a test will have d1fferent va]ues for a,

\

b, and c. If 1tems are real]y sampled from some item doma1n, the corres—
ponding item parameters will haVe some d{str1but1on, say gla,b,c).

» kThus, for a randomly samp]ed item, the probab111ty of a correct response
from a spec1f1c exam1nee with ability level s 1s g = E(p(e)) where the

expectat1on is taken w1th respect to the random var1ab]es a, b and c.
 That is, g=f/f p(e) g(a, b,c) dadbdc.

X,

To 111ustrate the pract1ca1 1mp11rations of th1s resu]t, consxder a
1 cr1ter1on-referenced test where the goa] is to determ1ne whether an |
exam1nee s percent correct true score & is above or be]ow the known . .
constant Eg- Is it possible to formu]ate the problem in terms of a |
latent tra1t model? In particu]ar, how can @ cr1ter1on score be found
(a value of ;6) that corresponds to g5. If the suggestion in Lorg (]980,
p. 174) is fol]owed, one m1ght determ1ne the criterion score to be the
' va]ue of 8 such that | . - - o , BN ‘
Zp (e) S .' _\_' '(3.2)
where p.(e) p(e, ,bi,c ) is the item response functaon for the ith
item on an n-item test. Th' po1nt is that if a d1fferent set of items
‘were used with presumab1' dlfferent 1tem parameters, equation (3 2) wou]d
y1e1d a diffevent cr erion score.. Thus, th1s procedure y1elds at best,
‘an est1mate of\whuc the cr1ter1on score wou]d be 1f the problem were to N
be reformulated Ain tenms of e0 | S S
Observe that ngo 1s d1fferent from the true score used by Lord (]980

4

LE ]74/. tord 1s referring to aE?expected number-correct true score, - but R

L ‘:4 ;-,‘

J\ B TS




is an unequivocal no; the p01nt 1s'that they are not. exact]j the same, and
the choice of a model should. depend on what an 1nvestigator wants to know
J~‘9f~course, somn individuals might be d1ssat1sf1ed w1th both models. .Inﬂ .
, terms of a criterion-referenced test, at least three a]ternat1ve approaches
are possible. The first is to s1mﬁly spec1fy a passing score on a test .
without any reference to some notion of true score; (See huynh,.1976;
Subkoviak, 1976; Wilcox, 1979%a.) The second is to take the view that
e;aminées either know or do not know~the answer toran item on a test' and
the goal is to detennine which of the n items an ‘examinee really knows
The th1rd v1ew is that the 1tems represent a 1arger domain of 1tems, and
the goa]cis to determine the proporticn’ of 1tems 1n the item.pool that

the examinee knows. The latter two views are discussed below.
4. Llatent State.Models

_ _ Latent’state modeis (a]so known as'iatent structure or Iatentoclass.
: nnde]s) have existed for some . time (e.g., Lazarsfe]d & Henny, 1968~
~Lazarsfe1d 1950) One of the origina] applications gas measuring att1tudes o
(Stouffer, 1950), but only s1tuations invo]ving apt1tude and achievement |
are considered here. A]so there: are cont1nuous latent structure mode]s
that are similar to 1atent trait models, but only discrete mode]s are R
: .discussed.»a | | o — R |
o A basicppremise in iatent state modeTs isvthat in'terms of.a,i

- specific item,,examinees canabe,descrihedyas'be]onging'to one ofgf

-

-
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finitely manytstates. The re]ative merits of this view are discusséd
in a more general context by Hilke et al. (1977), Scandura (1971, 1973),
and Spada (1977). | | '

The simplest case“1s where exam1nees are said to either know or not

know the correct responseeo The obv1ous prob]em 1s that under conventional

e e T——————— e

sltuat1ons, an examinee's responsebm1ght not reflect h1s/her true state.
For examp]eﬁ a testee. m1ght choose the correct reSponse on a multiple-
cho1ce test 1tem without knowing what the correct response actua]]y is.
Latent state models make assumpt1ons about the way exam1nees behave when

e

respond1ng to an item, or they make assumpt1ons about the way items are

, related tc one another (for example, 1t|n1ght be assumed they are h1erarch1-

‘cally re]ated) or they assume that examinees respond to the same 1tems -
“on two d1fferent occas1ons in time. A]though very genera] mode]s are
ava11ab]e no one model will be appropr1ate for every 1tem on every test
An 1nVest1gator must make a deC1sion about wh1ch 1atent state ‘model is 5
most appropr1ate and most convenient 1n a g1ven s1tuat1on. Once test
scores are aVailable, the . chosen mode] -can be checked 1n var1ous ways. 'y”
For mu1t1p1e-cho1ce items, 1t~now appears that one of two mode]s w111
. frequent1y f1t most- or all of the jtems on a test (N1lcox, 1982b)
| future 1nvest1gat1ons support th1s resu]t, 1t may now be possib]e to ,;e
app]y latent state mode]s in a re]at1ve1y straight‘orward manner

The purpose of this sect1on is to rev1ew genera] theoret1ca1 "esults

h.

on latent state mode]s that are based on one of the three assumptqons

5

mentioned above. _"eg _ 7’ T f»,h? 5

S




Test-Retest Models

As a simp]e'i]]ustration of how latent statec models work, suppose
an item is administered to a random samole of N exdminees on two separatevl
\occasions in time 'Let z be‘the prooortion of ekaminees iﬁ the population
,of examiness who know the anSWer, and ]et B be the probab1]1ty of rorrect]y

guess1ng the answer when the examinee does not know. In _other words, for

—a randomly sample examinee - DS
B = Pr(correct responsebexaminee does not know)
Let al 1nd1cate a correct response, and a 0 an 1nrorrect_response to-~w~w
'an ‘jtem. If p: ij is the probab1]1ty of the response pattern ijoon ’
the two occas1ons (i=0, ), J-O,-]), if no learnlng takes place between
the two adm1n1strat1ons, and if the event “of correctly guess1ng 1s
1ndependent on the two testings, the probabi]ity of a correct correct
'response pattern for~a_random]y sampled examinee is 'v
oyt (1- 2)s? . SRR T Lo (4.1)

, o S 4
For the remaining three response patterns, it follows that -

g =Ry = (1 -2) (1 -8)8 R 8
and . e ke .
Pgo = (1 - 001 - 3 ()

The p 's aré not known, but they can be estimated thh x1 /N here

: ixij is the number of exam1nees who get the reSponse pattern 13. It

follows that

Y -0 _ - . S o _ (4.4)

L Po * Py .

"»‘Thus, the unknown latent quantity B can be est1mated by replacing the
piJ s with X; /N Note that the mode] imp]ies that 840 which

{,can be tested (McNemar, 1947) Resu]ts on the power/of'McNemar s

H test are g1ven by N11cox (1977a) A]so, note that with a 1arge enough o

’samp]e the mode1 wi]] probably be rejected, but it may be that p]0 .

and - 2 are nezrly the same 1n';a]u'




s _12_ v.v

If é is the estimate of g using equatjon (4. 4), ¢ can be estimated
by rep]aC1ng 8 w1th B in equat1on (4.1), replacing Pyp with xll/N and
solving for 5. Some properties of this estimation procedure are g1ven

by Wilcox (1977a): For example, it is shown that if p is the common

" value of p]b" Pol under the assumption thetmodel holds, (x]0 + xO])/N
1s an. unb1ased efficient maximum likelihood estimate of P-
A related and s]ight]y ‘more genera] mode] was proposed by'Brown]ess
and Keats (1958) 1In addition to the 1atent parameters z and B, the
‘model 1ncludes .the proportion of examinees who 1earn the item between |
the two administrat1ons, and the proport1on of examinees who repeat the
same response from memory. on the second test1ng. Not all of’the parameters
- in the Brown]ess and Keats. model can be estimated, but Z and g can againv
be'determined. For a simi]ar model, see Marks and Noll (1967)
The ‘Brownless and Keats model appears to be one -af the ear]1est
. attempts to go beyond the simple know]edge or random guessing model that
is frequently adopted Unfortunate]y, for pract1ca1 purposes, the models
" just descr1bed are not convenient because they requ1re “two adm1n1strations ‘
~of,an item. : _ : :-.'_‘ A _§'f" |
Models Based on. Items ‘That Are;Assumed To Be Related
. in Some Part}cﬁfar Fash1on o ' ~
"This section reviews mode]s where items are assumed to be re]ated
in a pantféular fash1on. “Two s1tuations have been exan1ned in the’ ]1t-
erature. The first is based on the assumpt1on that two or more items

are h1erarch1ca]1y related, and the second is that 1tems are. equ1va]ent

Two 1tems are def1ned to be equiva]ent 1f all exam1nees know both 1tems

< . . L
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or neither one. Of course mode]s for hierarchically related items
(conta1n mode]s for equ1va]ent 1tems as a special case. cOnsider two -
equivalent items and let ¢ be the proport1on of exam1ness who know both

Let p;;. be the Probab111ty of the reaoon%eweeﬁternm1gwgnm2w9w99912e19n£ﬂ

g

items. If;B1 is the probability of cqrrébtjx guessing the réspdnse to
the first item when the randomly sampled ekaminee'ddes not know, and
if By 1s the correspond1ng probab1]1ty on the second 1tem, and if 1oca1

1ndependence ho]ds (i.e., given an exam1nee $ latent state, the responses

Al

are independent) then

: + (1 - i)alazv - S
Pro = (I~ c)é](i - 85) |
Pgr = (1 --2)sp(17- 8) 'i' - I (
0'—(1-:)(1-3)(1-32)'. |
| Skoing for.;, a],;and By yields
) , Pjo E
- P10 * Poo
5, = Pig

Po1 * Pgo




and
[ 1 "(po] + poo)(p]O * poo)/poo ..
‘Agaln the p 's can be estimated in the usual. manner thCh yields an

estimate of , B> and 8, | (wncox, 1977b).. . s

e

-t

at the 1tem .evel (guess1ng) need to be cons1dered However, even when
'comp]et1on Jjtems_are used, it may be necessary to measure and correut :
errcrs’at the 1tem 1eve1 (e g.» Harris & Pearlman 1978, Macready &
”“‘“*Dayton"—1977)—~—Thxs -time- though the quantity of 1nterest is.
" Pr(1ncorrect responselexam1nee knows) .

and -in the simplest case 1t 1s assumed that B = 6, 'Again-:‘amd a.can:

be related to the 913 . In particu]ar,_
..,pﬁ-:f Q- a])(l - “2) c B
g O-edepr o
B ETSUETS R
: ) P00>= Laqan + (:l :'.,C) e .
Thus, - - oe T
“ay = P/ (P ;tfp ) ’ T
el Ny N
7>ea2 ?‘1"mp]]/(p]o‘t_p1j) A ' " . : v
N .—‘. ~ . i . . - . - ' , . . ) . e .
' ¢ = (pgy +Py) ey #pyd/ey - N
..' . . ft- .‘? . . ) » \1 . ; . .
/ - . :
\ N L
/- i ;‘i .‘:~.!4 . . . |

Mu1t1p]e -choice items are the most obvicus examp]es where errors -



'}f_lsi U

Rep]ac1ng the p 's with: the1r ususal. unbiased estimate y1e]ds an est1;

mate of ¢, @y and @2' For-some re]atedimode]s and-resu]ts-see Knapp

(1977), Harris and Pearlman (1978), and Harris.et al. (1980)f

) If three or more equiva]ent items are availabde, it‘is possible toy,
’ est1mate both B and o us1ng-the procedure outlined by Goodman (1979),

or using the scor1ng method as in Macready and Dayton (1977) These
<
.two est1mat1on procedures rely on 1terat1ve techn1ques that apprOXT-

: _mate the max1mum 1ikelihood est1mates of the parameters in the mode1

°© 1

| In practice, these techn1ques seem to converge very rapid]y, and SO -
somet1mes they cou]d even be app]1ed when computer fac1]1t1es are not

available (cf. Kale, 1962). However, mode]s can become qu1te comp]ex

‘ necess1tat1ng ‘computer fac1]1t1es L . _ e
| ) . -
HoW‘can the assumpt1on/that two or more items are equ1va1ent be S

-

. empirically checked? One way 1s to apply a goodness- of-f1t test to the
| ‘resu]t1ng latent structure model as 'is 111ustrated by Macready and Dayton
- (1977). (For some recent resu]ts and comments 0n us1ng goodness—of f1ti)( ‘
~tests, see Sm1th et a] s 1981 Koeh]er & Larntz, 1978 Chapman, 1976 ) . )
However, this approach is use]ess in the case of” on]y two items (un]ess
'1t is assumed that 31 52 and a = 0) because there are then three .
;]atent parameters and on]y four poss1b]e response patterns resu1t1ng

*1n zero degrees of freedom

\ L
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An alternative approach was suggested by Hartke (1978) that is
;baSed‘on*iatent‘oartitiOn‘ana]ysis,land an index proposed by Baker and
Hubert (1977) might be useful 1n this endeavor as we11 Ifimu1tip1e- |
ch01ce test items are being useo and 1f the test-is administered . ‘ ’ i
according to an answer-until-correct scor1ng procedure (wh1ch is described
below), certain equa11ties are 1mp11ed when 1tems are equ1va1ent, and
these equa]ities can be tested (w11cox, 1981d). Some additiona1 pos51b11ities -
are mentioned by Niicox (1982f). . ' ’ i
Hierarchically Re]atédvItemsAoriﬁuttman Scaies

Latent structure mode]s based on the assumption that items are _
hierarchica11y re]ated or that the poss1b1e 1atent states form a Guftman
‘scaie, 1nc1ude as a speC1a1 case the notion of equiva]ent items - In
terms of equ1va1ent items, examinees are described as being in one of

-

o two states, they know both items or ne1ther one. For two h1erarchica11y

re1ated 1tems, a third state is 1nc1uded, namely knowing the secohd

item buf not the first Again, in certain specia1 cases, the proportion

of examinees 1n each of the 1atent c1asses can be estimated using simple :

_ (c]osed form) equations. AVery genera] mode]s are aiso avai]able where 'vu ‘ |

est1mates are obtained via 1terative techniques (Dayton & Macready, 1980 1976)’ o
o As a simpie iﬂiustration, cons1der two items and let ;] be the |
sproportion of examinees who know the second but not the first ‘
If the guessing rate is the same on the two items, ie.s 61 .v321=ré§" '

say, then 3

-,
S
ot
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L a2
Py eyt (-2 c])p

p]0>=,§](1 -8)+ (1 - : - c])p(i~i'p),

Poy = (1 - = z)8(1 - 8) , -
pbo =(1-z- c])Bzi . “
It fof]ows that | |
= Poy/(Pgy * poo) |
= Py = pO])/(l _8) o

=1 - 8(1 8)" p01 ;] .

and SO maximum likelihocd estimates are ea511y obtained (Ni]cox, ]980a)
This mode] is restrictive in the sense that By = B2 might be untenab]e,
but much more genena] models are availab]e which allow B] f By (Dayton '

& Macready, 1976 ]980) . . S

- 7 Verifying Hierarchies

a

Interest in learning hierarchies has been with us torlsdme time
(e.g. s Gagne & Paradise, 1961. Gagne, ]968 Cox & Grahman, 1968) but
here attention_ is focused on]y on the ro]e latent structure models p]ay
in verifying hierarchies. Apparent]y the first method of examining

‘\
whether two {tems are hierarchica]]y re]ated was proposed by Nhite

. and C]ark (]973) The procedure 15 based on the assumption that for

each of the two 1tems being investigated an equiva ent item "ai]ab]e. i

A The probability of the various response patterns can be written in terms s
o of‘the re]evant 1atent parameters which yields a test of uhether the :i;.'
items are hierarchica]iy reiated A]though Nhite and C]ark (1973) were f

explicitly 1n.erested in determining whether two 1tems are hierarchica]]y o




T

~

"reiated techn1ca11y they were not . the f1rst to formu]ate a model that _
could be used for this purpose. . In part1cu1ar, Proctor (1970) proposed l
. a- 1atent structure modei where the latent states of exam1nees are assumed
to form a Guttman sca]e A goodness-of- fit test: cou]d be used to check
. whether 1t is reasonable to assume items are- h1erarch1ca]ﬂy related.’
Today Proctor s model would presumab]y be rep]aced by ones proposed by
Dayton-and Macready (1976, 1980), and again a goodness-of—fit test could ’
be used However, ‘as was the case for equivalept 1tems, there are 51tu- :
' ations where this is 1nappropr1ate. Again the prob]em 1s that ‘there f}

4

'are as ‘many 1atent parameters as there are degrees of freedom. N

# A third method is based on an answer-untilrtorrect scoring procedure.

3

If two 1tems are h1erarchica11y re]ated. certain equalities shou]d hold

“which, for convenience, are descr1bed in a 1ater section of the paper.,,

Some Conc]uding Remarks on: Latent State Mode]s fof,',,_,m[;mmw;."

Equiva]ent and Hierarchically Related Items

R 4‘\'\‘

' C]ear]y there are s1tuat10ns where the notion of equiva]ent or
-u'hierarchically related 1tems is too restrictive. This point was’ raised
"1hy Mo]enaar (198]), .and the author, wOuld certain]y concur. HoweVer, there

are situations involving rea] data where the. notion of equivalent items »i
‘seems to be. useful (Macready Dayton, 1977, Harris & Pear]man, 1978)
\",More recent]y, Harris et al %&980) applied an equivalent item mode]
to rea] data collected in schoo] settings. Th]S was done every week |
'over a period of many weeks Al] indicatnons were. that the test resuTts

prov1ded va]uab]e and va]id infonnat1on.: Moreover, these mode]s a]]ow

a> 0, whﬂe the models described 1n the next section assumea- 0.




o scores.- Another potent1a1 problem 1s that the 1tems on

»;{s:practica1 purposes 1t nou dibe”convenient to haveﬁ'fc

A
i

detnods of est1mat1ng the parameters in ]atent structure mode]s were
a]ready nent1oned and typlcally these are used - For some re]ated |
- results see Harr1s et a]. (1980), Rao (]973) W1]cox (1977a 1977b
" "1980a, 1980b), Haberman (1977), Werts et al. (1973), and van der Linden |
. For some re]ated genera1 resu]ts af d comnents on 1atent sfructure d
mode]s, see McHugh (1956), Kees11ng (1974) Bergan et al. (1980), . ~‘f
Reu]ecke 1977) Lazarsfe]d and Henry (]968), Gibson 21959,/1962),_ ;
~ Goodman (1974), Green (1951), and Gq]u?a (1979). For addftiona]’comments ; f
hon how latant structure mode]s re]ate to latent trait mode]s, see van der l
L1nden (1978) For an approach to measurement prob]ems that'1s somewhat

5re]ated to the d1scu551on -in this: subsect1on, see C11ff (1977) and

Harnisch and L1nn (1981)

~

.

Mode]s Based on Assumpt1ons About How Examinees Behave '

v

B o - When. Tak1ng Mu]t1p1e“tho1ce Test Items ep-.'

.»°"

| Desp1te the very genera] nature of the mode1 discussed by Dayton | ‘
jand Macready (1980), and some recent re]ated resu]ts reported by Macready :
'and Dayton (1980a)andBergan et al. (!980), there remains the practical o
~.prob]em of 1nit1a11y determining how 1tems relate to one another so that

-'a particular 1atent structure model can’ be tried out on observed test

1“particu1ar n-itenf:f

"test might not be consistent with any particular formfof }e;model Fon\;fi.d

e that cou]d be. (e

'used to measure the effects of’guessfng n1thout assuming hat'items are ‘

PRl 1f the.

Z;related in any part1cu1ar fashion.i It would also be hel
, foe., ‘ smmwnhmMmff

fiﬁst, wou]d




- tinues until the correct a]ternative is 1dentif1ed

A 20-

he the ability to easi]y f]t a 51mp1e model to a]i the 1tems on an
arbitrarily chosen n-item test. This ]ast goa] was reached 1n Wilcox .
"'(1982b); o Before 1nd1cat1ng how th1S was done, ‘some’ earlier resu]tS‘
.will be given first. o | | |
Suppose multiple-choice test 1tems are scored according to an
answer-untii-correct (AUC) scoring procedure Th1S means - that examinees.'.
ChOOSe an a]ternat1Ve, and they are told 1mmed1ate1y whether they are '
correct., One way to accomplish ‘this 1s to have examinees erase a shield
ona special]y designcd answer sheet which is availabie commercially.
Underneath the shie]d is an indication of" whether the examinee is. correct.

: , ) \
o If incorrect, the testee chooses another response, and this process con-

Unlike other 1atent structure mode]s, Wilcox (1981c) makes certain®
*fassumptions about how examinees behave when responding to a mu]tipie—

: choice item, name]y, that examinees elinnnate as many distractors as ‘__‘-:

: ,'they can (through partial 1nformation) and then guess at/random from among

the a]ternatives that remain.i ‘This assumption is not. new (e g\, Horst,
1933), but 1t was not previous]y used in conaunction with iatent state
;nndeis. Undoubted]y this. assumption is an over simp]ification of rea]ity,:p:
fbut 1t has proven to be con51stent with most of the items studied by Hiicon<?
(1982a, 1982b, in press a) f | R . ) L . :
For a randonﬂy samp]ed examinee responding to a partiCular item, iet

T again be the probabi]ity the examinee knows the answer,a

\(1-1, iaes t 2) be the probability the examinee can eliminate i dis-

m ﬂe,tractors it he/sheidoesinot know,‘where t is the humber of alternatives.ﬁyvi?

inee gets the correct ;



Q

,; distractors are chosen.. So. far though 1t seems tha'\t;ri

) describeo above will suffice

R

N t-2 - . . . N i . .' .
.p'] o+ izogj;./”(t -.-1') o g T C (4.6)
and | : 0 :._ | : - _
: t-i- .- : ) _
PiT aibcﬂt -3 ‘ L=, e e

L

It fo]lows that ; =Py 7 Py - Thus, if in a sample'of'N examinees§~xi .

: are correct>on the 1th attempt, then :

N T N

.

.. 1s an estimate of ;.' The modeliimplies that

copy 2 pz--" SRR N SR ) | (4.9)
and ‘this. can be tested (Robertson, 1978) Empiriéa1 1nVestigataons |
(w11cox, 1982a, 1982b) suggest that (4 9) w111 frequently hold

Equat1on (4.9) rules out °the m1s1nformat1on mode] proposed in N11cox

(1982b), but it is d1ff1cu1t to say whether test1ng (4 9) g1ves a strong

1ndicat1on of whether the model holds.; Perhaps. some other model cou1d ,

~ﬂ be der1ved that explains ex1st1n%,data (e g , Hutchinson, 1982‘ In ad-

/i

. d1tion, ‘the random guessing component of the mode] 1s undoubted]y untrue S

(i.e.,- exam1nees guess1ng ‘at random once they e11mdnate as many df"tractors 'ff
as poss1b1e) However, an’ empirica] 1nvestigat1on 1nto an 1mp11cation of |
the random guessing component of the‘model suggested that the mode1 gives

a tolerab]e approximation of reality (N11coxf 1n press a) Hhen this 1n- -

vestigation was conducted 1t was thought that a genera11zat1©n of the Af ﬁa

~ AUC model would be needed that takes 1nto account the:order in which

simpler model
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_ The latent structure medel JUSt described 1mp11es that equatxon (4 9)

" must ho]d for the popu]at1on of axaminees. In a few 1nstances this assump-
-.t1on appears to-be unreasonable, and the quest1on arises as to how these
resu]ts m1ght be exp]a1ned The so]ut1on proposed by N11cox (1982b)

is that some of the exam1nees have m1s1nformat1on re]at1ve to the quest1on
be1ng asked Th1s appearéd to be a reasonab]e Speculat1on based on. the ,
way the quest1ons were phrased «and so a mod1f1cat1on of the answer—unt11-
correct scor1ng procedure- Las proposed For examp]e, one of these 1tems
.dea]t with the we1ght of 1ron after being heated The examlnees \who were
approX1mate1x 14 years o]d) were told that when heated, 1ron expands. They
were also to]d the weight’of the 1ron before it was heated They were i{, ‘

* then asked what the we1ght of the iron would be when red hot. Three of

the’ a]ternat1ves were we1ghts that were h1gher than the we1ght at room

o

"temperature. Thus, it seems reasonab]e that some examlnees m1ght be11eve
that iron 1s heav1er because it expands, and they would therefore choose -
,»among the three a]ternat%ves cons1stent w1th this be11ef

" In contrast to ear11er mode]s, 1t -was. decided to der1ve a latent

'structure modellwhere examinees be]ong to one of three latent ‘states

<

rather ‘than 0n1y two, name]y, they know the answer, they have mis1nfor-

-:mat1on as Just described, or they are in comp]ete ignorance and guess at .

o random The resu4t1ng model gave a good f1t to the data, and a s1mi]ar

‘model was der1ved for the other 1tem that did not f1t the or1g1na1 answer—

o unt11-correct mode] described above. The po1nt that is particdﬁar]y in-

'v

terest1ng is that observed responses to a]l 30 1tems on the test cou]d

- - . .. . . . . . - z




-23~

be explained with models that are very easy to use.
Desplte the advantages of this model, there may be situations where
3certa1n featuresz are obJectlonabTe For examp]e the model assumes that
an item has at “east one effectlve d1stractor for those examinees who do '
not know. Pu ~other way,, 1t is assumed that no d1st1nct1on is made be-.
tween examinees who know, and those who can e]1m1nate all of the distractors.
For practical purposes, the seriousness of this problem is. not‘known Anr
other feature is that it assumes a.= Pr(incorrect response[exam1nee”knows)
= Q. Aqain'the seriousness of this restriction is not well understood.
. @ I ,SometMiscellaneous Models
In add1t1on to the models described so far. three s]ight]y related
mode1s have been proposed‘by Reu]ecke (1977) The first, which ReuTecke :
'ca]1s the Pomsson binom1a] mode], ‘assumes that examinees are reSpond1ng
to.n equ1va1ent 1tems.‘ for examinees who know. 1t 1s assumed that they
_'give an 1ncorrect response to x 1tems with probab111ty h exp( h)/x..
the Po1sson density. where h is an unknown parameter. For examfnees .
who do-not know it is assumed that B = .5: His second model replaces _
.rthe assumption that s 5 with the assumption that. guessing x 1tems k 7

n= xexp(-x)/(n-x) where u 1s an unknown .

parameter.- The: third model 1s the same as the last except that an ,_-! 'n«f~

. _g1ven the examinee does not know 1s u.

-

add1tiona1 latent state 1s 1nc1uded namely. that,some exam1nees guesskr{'v

-

at random. ~av

.~

s

531§5ﬂjii;§a':'




An alternative approach'to measur{ng misinformation Was proposed«by‘
\

Duncan (]974) For a partxcular n item test \1et 6] be the number of

1tems an exam1nee knows, and ]et 62 be the number of 1tems for wh1ch the

~o

: exam1nee ‘has- m1s1nformat1on - If-every- 1tem has t- a]ternatxves, Duncan -
assumes that guess1ng is at random, and that the probab1]1ty of - getting

x items correct is- : . L : T

- f(xl,s],sz) =

n ‘;61 - &, 6,-x i:l. n-8yx . ST
x,A-S:l- t g : -

Both Bayes1an and emp1r1ca] Bayes1an est1mates of 6] are d1scussed.

5. App11cat1ons of Latent C]ass Models, and the Need To cOrrect
" For Guessing -
. Latent c]ass models can now be used to ana]yze 1tems, ana]yze n-1tem

tests, and they can be used when an item samp11ng model“1s deemed appro— /
| pr1ate This sect1on out]1nes the procedures that are ava11ab]e . The. B
. main advantages of these procedures are that they prov1de ways of dea11ng

with guess1ng that are not’ poss1b]e u1th other mode]s But why - worry about
. guessang? Perhaps guess1ng wi]] have 11tt1e EffECt on the purpose of a

test. Of course answer1ng th1s quest1on is cruc1a] in order to mot1vate__;___;
. the procedures descr1bed here, and so a few comments will be made aldng

'these 11nes _

; Let w. be the proport1on of 1tems 1n a doma1n of items that an exam-
1nee knows, and suppose the goal is to determine uhether m>m0 for some~}

o predeterm1ned mo -This prob]em has rece1ved cons1derable attent1on in

| recent years as. ev1denced by the 1980 spec1a1 issue of App]ied Psycho]gg; :




%ca] Measurement Suppose wo 8 and that it is des1red tb choose n,
the'test(}enét:u so that the probab1]1ty of correct]y determ1nﬂng whether
vawp * 27 leasT .0 whenever w®.9 or ws.7. From Wilcox (1980b), n=29
are reguiv: Van den Brink and-Koe]e (L980)'pOinted'out that euen

- random g ng can be assumed, about five or six t1mes as many 1tems
are needed to ensure the same 1eve] of accuracy as when there TS no guess—‘

\}-——/

ing. Wilcox (1980D) noted that random guessing can not be assumed in wh1ch

case over 2,600 items are needed L ’

As another illustration, Ash]er (1979) observed that guessing can _

—

~ /
//

ser1ous1y affect the. est1mate of the b1ser1a1 corre]at1on.,'; -

A th1rd reason to be concerned about guess1ng 1s that 1t m1ght be <
1mportant to detenn1ne how many 1tems on a test an exam1nee knows, or even
‘*”“Wh1ch‘ftem5“are known‘and'thch‘are~not~-5ure}y th1S*ﬂs—somet1mes-ﬂmpor-~~ﬂ37
tant when measur1ng ach1evement but guessing can ser1ous1y affect the o
. resu]ts An i]]ustratlon w1th rea] data is g1ven 1n w11cox (1982d)
| Fina]]y, most so]ut1ons to measurement prob]ems 1gnore guessxng, or_:,"ﬁ
bassume guessing is at random. Perhaps one of these assumptions w111 g1ve
'.reasonable results in some-s1tuat1ons, but all 1ndications are that th1s 1s
- not always the case In fact guessing seems to be more serious than m1ght
at f1rst be expected and so 1t seems ‘hat there,might be wa measurement
| prob]ems where guessing can be ignored It m1ght appear. that certain latent
eijtra1t models ‘handle guess1ng, but th1s is not necessari]y the case because <,v
P the type of guessing examined 1n 1atent c]ass mode]s 15 different from ;';j::'
'5jthe type of guess1ng 1n latent trait mode]s Thfs point 1s elaborated 1n v;ﬁ

o - RS

Sect10n 5




A

¢ whether an item samp11ng view 1s—be11eved to be approorzate whether

. operat1ona1 versions of the test are. to be based on convent1ona1 scor-
ing or AUC scor1ng,\or whether 1tems can be assumed to be re1ated ina
part1cu1ar fashi/n,//ff convent1ona1 scor1ng is to be used -then pre-
11m1nary 1nvest1gat1ons of a test m1ght be made via AUC scorzng to de- g
——-—term+ne—whach—%tems_are—partlcuﬂarly_affected_by.gue551ng,_and to,measure,“,mﬁj

" the overall accuracy of a spec1f1c n- Ttem test. Methods for so1v1ng these

prob]ems are out11ned~be1ow., o "F'glm ;“é I s

. c . An31}zing an n-Item IeSt
R Cons1den,an n-1tem test and suppose the goa] is to determ1ne how
many 1tems an examinee knows._ Further suppose that it 1s dec1ded an

‘examinee knows if and only 1f the correct response is g1ven. - How accurate‘
1s the test for the typ1ca1 (random]y samp]ed) exam1nee? -
Let 11 be the probab111ty of mak1ng a correct dec1s1on

about whether an- exam1nee knows or does. not know the- 1th item when a con-

vent1ona1 scoring procedure is: used - The parameter T is eas11y est1mated{§;,

under an answer-unti1-correct scor1ng procedure, it 1s one m1nus the™ prob_ S

-

ab111ty of a correct response on the second attempt (Hi]cox. 1981c,. A

- natura1 way “to character1ze an. n-1tem test 1s to use

the expected number of correct dec1s1ons for a random]y sampIed examinee .

Ly
St

who takes the test. ;T ;’tﬁ,]diff e

In some cases some add1t1ona1 re]ated infornation is usefu] Suppose;H*'

e e
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. for ‘example, there are n = 10 itéms, and 7_ is estimated to be 7.7 That

_ 1s, the expected number of 1tems‘for which a correct dec1s1on is. made
dabout what an exam1nee knows s éstimated to be 7. To get a better in-
1 .
d1cat1on of how well the test is. perform1ng it would be usefu] to a]so-

i [y

:know the 1ikelihood of-say at least 8 ‘correct dec1s1ons among the n E iQ -

: ~E;§ms IKnow1ng\r does not y1e1d much ipformation about thks value.

“\

N,

More genera]ﬂy,.]et pk be the probab111ty ofrmak1ng at least k

correct dec1s1ons among the n items about whether a. typxca1 exam1nee

., Knows. Certaan]y pk 1s a usefu] measure. of how we]] a test 1nd1cates

8
. \
N

what a typ1ca] exam1nee knows’. If r or pp is Judged to- be too sma11

' AN
s “Ethe test needs to ‘be modified in some. way For example, the number of

jd1stractors m1ght be 1ncreased, or perhaps the. ex1st1ng d1stractors

might be 1mproved . .

The parameter P can -be expressed symbo]1ca11y, and more precise]y,
~ <in_the fo110w1ng manner Suppose it s dec1ded that a testee knows the

,answer to an 1tem 1f and only 1f the correct respoqse is given on the .

' hf1rst attempt of fhe item For a random]y samp]ed exam1nee, ]et yi 1 |

" if a correct dec1s1on is made about the exam1nee s latent state on ‘the

- ith 1tem;'otherw1se y; = 0. Then‘

. Pk = Pr‘(Zy >k) . ‘ s . .
Wilcox (1981 b, 19821-‘) _‘ | refers %o pk as the k out of n rehabﬂity

of a test.: S g: N o o

< 7 » A
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- ) . . . . . .
In classical test theory, the re]iabiiity of a test-can be estimated:
A .

if two paraT]e] forms exfst. Of course, "nG two tests are ever exact]y

Y

Fpara]]e], and SO bounds on the re11ab111ty are used 1nstead The best

.

'_"known bounds are the: Kuder- R1chardson formu]ae. These bounds are expressed7“
'"Q in terms of unknown popu]at1on parameters such as the d1f?1cu1ty 1eve1 |
of the items’ on the'test, and variance of the test scores. Although

_these parameters are not known, they can.be est1mated. ‘A sim11ar s1tuat1on \y;
’occurs ~in-terms of est1mat1ng pk.n If 1t can be ‘assumed that y is in- |
t dependent. of - yJ, i 4 3s 9y could bevestimated (N11cox, 1982¢)..
-'However, there may be cases where th1s 1ndependence does not ho]d 1n

which case there is no method of est1mat1ng CIES However, both upper and -

,/__/
-

f’ower bounds on pk are’ avai]ab]e, and ‘these can be est1mated (N11cox,

1982f, 1981c) Even.if yi ‘and Y; are 1ndependent est1mat1ng pk can :

" bea computationa]]y tedious process when n is 1arge, and so aga1n

,,..«/‘ -

_ these bounds m1ght be useful. '

In the event y_i and yJ are 1ndependent for all 1 and j, 1t is a?so '
possible to make inferences about whether pk is large or. sma11 (w11cox,
11982c). T Unfortunately;\there is. current]y no empir1caI procedure
for determ1n1ng when th1s 1ndependence m1ght ho]d and SO some caution .
should be exercised S - ‘ ) L

Mone recently, Wilcox (in press b) proposed an approx1mat1on of Pk
that appears to work we]l when n is sma]], say n < 5. For larger .

©“
va]ues of n the Bonferroni 1nequa11cy can. be app11ed as 1nd1cated by

: N11cox.

L T

%4
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- what To Do when Tg or oy is Too Sma]]

If the . est1mate of r or-gy is Judged to be too smail, two genera]- -
Iapproaches are. ava1]ab]e “First, 1dent1fy which 1tems are ser1ous]y
affected by quessing, and either 1ncrease the number of d1stractors, or’

"% attempt to 1mprove the anes. that are be1ng used. Theusecond ‘approach is
\ to use a scor1ng procedure based on an AUC ‘test proposed by Wilcox
\ (1982e However, the effectiveness of W1]cox s scoring procedure‘1s not .
| known when the«number'of examinees»isfsmall. An investfgation into this-

| problem is underway . ' | .'

If the f1rst approach is se]ected two measures are ava1]ab]e for

-~ deciding whether distractors for anv1tem are work1ng.we]1 The. f1rst is

to use some Schur function:(see Marsha]lvand Ojkin; 1979), such as

‘ H(pz, ...iept) = -y L 1]n AR '] T

the entropj function which measures how "far away" guess1ng is from be1ng
rand0m His a]so known as Shannon s measure of 1nformat1on or d1vers1ty

. If guess1ng 1s at random, in which case the d1stractors have ach1eved their

max1mum effect1veness,

Pt p3 =P I B
3 and H atta1ns 1ts maximum va]ue Its m1n1mum“Va]ue occurs when Py = 1 - P,
~ and P3 = p4 ‘=’”t 0, in wh1ch case guess1ng is as far away fron being

e..v

random as it can be.~ .
. ) H11cox (1981c) pr0posed another measure of how we]] the distractors
are performing Labe]ed A. it zs JuSt the ference between the max1mum .

‘ possible value of T (for fixed ;) and the actua] va]ue of 1. An 111ustra— .

tion of the A measure 15 given in H11cox (1982b)
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L 4

; Jhe"entroo}t;unction’measures the extent to mhich oz, Pgs ==+ p£-
are unequal; the closer the distractors are to being equal, the c]oser
is.the item to‘the‘ideai situation where guessing is at random.' H can
be.estimated by repiacing the p1's with ie/N This yields a maximum
11ke11hood estimate of H, say H but the exact distribution of H 1s com-
plex and cumbersome to work with, and an asymptot1c approx1mation of the
- d1str1but1on of H tends .to be unsatisfactory unless N ls very large

| (Bowman et a]., 1971). Accord1ng]y, it m1ght be convenient to have some

_ other index that'measures the extent to which p2’ N pt arevunequa]

It turns out that a who]e family. of funct1ons ex1sts that have propert1es '

“similar -to H (Marsha]] & Olkin, 1979). One function that seems espec1a1]y~
convenient is.SimpsoNsineasure of divers1ty-(S1mpson, 1949). For the
situation at hand it is g1ven by ,

Z [p'i/(] - p] )]

~

Note that random guess1ng can be tested Qy test1n3 p2 p3 .;.. Pt

‘ (see Smith et al., 1981 Wilcox, 1982e1 * But 1f the nult hypothes1s

is reJected the rea] quest1on is how far away the 1tem is from random '

' gdess1ng, and the measures S and H answer this question

Alam and Mitra (1981) report some resu]ts on the d1str1but1on of

=1 R T

which might be'used‘to.make inferences about S,%but there is an error in

N

?..x"‘.z o S

their results. Alam (1981) confirms the«error;.and a corréction is in

preparation,
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Testing Whether Items arevKuiva]ent or‘Hierarchica11y Related

The same model used to make 1nferences about pk can a1so be used

to test whether items ‘are equ1va1ent or h1erarth1ca11y related The

procedure can be br1ef1y out11ned as fo]]ows. For a-random]y samp]ed

examinee respond1ng to a pair of Spec1f1c test 1tems, 1et ;1, be the

probab111ty of being able to e11m1nate i distractors from.the_first

item and J d1stractors from the second The'proportion\of’eiaminees hho
- know both 1tems corresponds to Ct 1,t- 1 where t 1s still -the- number of ‘v

distractaors. .If pkm is the probab111ty of a correct response on the ‘\< |

L 4 DN

ththmand>mthhat¢empt of the two items respective]y, then under certajn _

m11d 1ndependence assumpt1ons,-
! t-k t-m

2 Z 55 /[(t 1)(t~J)]
If the two 1tems are h1erarchica11y're1ated then some of the ;1j
- must equa] zero, wh1ch in turn means that some 3; the pkm s will be
| equa] to one another. An i]]ustrat1on 1s given 1n w11cox (1982f)
These equa]1ties ‘can be tested in numerous ways yielding an emp1r1ca1

check on whether the 1tems are h1erarch1ca11y reTated.

:»:Correcting.for Type.II:Guessing‘qrp

A1l of the app]icat1ons that have been described are based on
what N11cox (1981c) calls Type I guessing ' This just means that guess- n,t

' 1ng is def1ned in terms of . a random]y samp]ed exam1nee reSponding to a [If'




-32-

r
A

RN

randomly samp]ed 1tem. Th t 1s, an exam1nee s guessing b1]1ty is
v / '

: the probab1]1ty of [iving correct response to a typ1ca] test 1tem

that he/she does not know, The s1tuat1on 1s s1m1]ar to the 1tem

samp]1ng mode]; descr1bed ear11er, except that guess1ng is taken 1nto
account ‘Rather than es 1mat1ng E, an exam1nee s percent correct
true score, "the goa] 1s .0 est1mate we the. proport1on of items ln the

~ item pooT that ‘the exam1nee knows., :
.‘ ‘!."

It 1s a simp]e matter to adaust Tatent structure models developed

| under Type I. guess1ng to[ the nroblem of estimating © (e g., Hilcox,

1979b 1981c, ]982a) Cohsider, for example, an answer—until—correct o

teSt: If for a Specific examinee, ws is the probab111ty that he/she .
can eliminate i distractors from a randomly chosen 1tem, then the probab111ty
) . . -

of getting an item correct on the ftrst attempt is .

o R

qi.—m‘f‘ 2/“'{/(t ‘1)
and the probabiTity'of a correct-response on thelsecond attempt is
. tiz : -( V'),_ ’ _ o 2 |
q, = w/(t ~1) .
2 20 7 : _
SO . . -

. Thus, if.on an n—1tem test there are z; 1tems for which the examinee 1s °
correct on his/her 1th attempt the estimate of w 1s s1mp1y '
a - ~ a = (Zl - 22)/0 T /'_" —

: <R -
b ST ; - '

indeed a]l of the results under Type 1 guess1ng are also availab]e under

- Type 11 gue351ng.
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‘Should interest be directed toward determiniﬂg which (or how many)
‘&of the n items on a test an examinee knows, or toward estimating w, Ek _
for both? Macready and Dayton (1977, 1980) argue that at least in some
51tuations the former goa] shou]d be sought, and that perhaps formu]ating
the goa] of a test in terms of w. shou]d be avoided It would seem that
.the so]ution to this prob]em will’ depend on what exactly an 1nVestigator
wants to determine, and_of course this will vary from situation to
situation. | "ll D ’.i

An advantage of estimating w w1th an answer until-correct scoring o

' procedure is ‘that it can substant1a11y reduCe the prob]ems noted by

van den Brink and Koele (1980), and Ni]cox (1980b) ‘when trying to’ deter-

" mine whether w is above or be]ow some’ known constant This 1s one of
theeproblems mentioned at the beginning of th1s section. In situations
where an answer-until-correct scoring procedure can be used, there are
now two re]ated so]utions that might be adopted (Hi]cox, 19829.v ’
(1982d) . The former approach 1s particularly wel] suited for com--

) puterized testing where a sequent1a1 scoring ru]e can be used

T vStrong True'Score_Modeisferf.

~ Rs’ preViously indicated the Type II guessing model underathe answer-v
.}wfuntii-correct procedure impiies that w, the proportior of items an .

/ "examinee knows, is equa] to q] - qz, where q1 is the probability of a
'correct response on’ the ith attempt of » e fﬂy selected item.~ Und;

a conventiona1 scoring procedure where an exan’ nee- gets on1y one attempt

?at an item, q1 is the examinee s percent*congect true score.- If for a ;5

1:.Ppopu1ationiof examinees. he distribution of:-'q1 cou1d be determined, -
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many practical measurement problems -could be so¥ved (Lord,-1965; Lord

& Novick, 1968, ch. 23; Wilcox, 1981a). The most frequently'used approach

ﬂwhen estimating this distribntion;”say g(q]), is to assume that
. g + ) ' . e o

g(ql) = (r) (S) ] 1 - q;)°" -1 | (5.1)

S ; o b

the beta den51ty w1th parameters r > O and s> 0 and vihere r is the
- gamma function. Empirical studies cited by W11cox (198]a) 1nd1cate

that (5. 1) will frequently give good resu]ts when addressing various

measurement prob]ems

e e e s

Is it poss1b1e to deveiop a similar strong true score model that
_ takes 1nto account . the guessing abi]ity of the examinees? Nilcox L ;,
(1981a) summarized results on severa] models that. have been proposed !;
| and so they w111 not be discussed here. The important point is that a]] :
'of the strong true score mode]s reviewed by Wilcox (1981a) now appear to
,ibe tota]]y inadequate for both theoretical and empirica1 reasons. Some
:.of these. models were based on the assumption that guessing is at. random,'
‘but recent empirical investigations 1nd1cate that this is highly unsatis-
) factory (Hilcox, 1982a, 1982b) ‘See a]so B]iss (1980) and Cross and
| Frary (1977) Other mode]s were base on a mu]tivariate ana1og of"- the = :/
beta-binomia] distribution’ (the Dirich1et-mu1tinomia1) which allowed 8 to |

vary over the popu]ation of examinees This model implies that w and B
ﬂ’are 1ndependent (Ni]cox, 1981b) but this appears to be an- unsatisfactory '
'assumption because the model gives a very. poor fit to data. ' |

Coombs et al (1956) suggested that an examinee s guessing ability
increases with the proportion of items he/she Knows. Hi]cox (1982a)

d'proposed a strong true score mode] based on this assumption and an an—

':swer-until correct scoring procedure under Type II guessing Among the -
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severa] mollels that were con51dered this was the on]y mode] that gave
2 reasonaﬁie fit to the data. A more recent empirical study got - 51m1]ar.
‘ resu]ts (Wilcox, 1982b) .
The model assumes (5. l)ho]ds, and. as a]ready mentioied ‘this
frequently gdives good resu]ts_w1th rea] data. Let y = qZ/(i - q]).
~ The model also assumes that y can be written as an iHCreasing function of
» q]anhich‘is.given by i - |
' . q? r(r s ) r]-] BN 1 R
v(qy) = CI ~1 1 (- U) du + (t )
_ 0 r(r])r(s ) :

“ where c, ,] > 0, and 512 0 are unknown parameters that are‘estimated
from observed test scores. (The subscripts onr and s are used to
distinguish them from the parameters rand s used ear]ier ) A method

" of estimating cs r], and 5y 1s described by Wilcox (]982a) -

This model.can be used to solve many measurement problems that were

- preuiousiy impossible to solve.. Foriexamp]e, suppose a conventionailtestfb
is administered, and'it is:desired'to correctdfor guessing without assUming
guessing is at random. If the- function y(q]) has been prev1ous]y estimated
then u = q] 'y(q]) . Ify is arbitrarily set equal to (t - ]) » the
usual correction for guessing formula score resuits..‘“ ,' ﬁ ‘ ;' - S

It shou]d be mentioned that while it is possib]e to c?i}ect for

guessing under the answer-unti]-correct procedure, a]ternative scoring
ru]es might be preferred (Brown, 1965; Dalrympie-A]ford 1970) These
scoring formu]ae do not estimate m but instead give an examinee credit

7/ for haVing partiai information. Nhether-this isdesirab]e wii] depend
on the examiner s goa1 -of courSe, severa] other scoring procedures hav:
been proposed. some of which are discussed by Frary (1980) The important
point is that none of these rules yieias an estimate of'u.‘ The same is

txue of the procedure proposed by Gibbons, O]kin, and Sobe] (1979), and o

the rule‘suggested by Au tin (198 . Note thit tsstin s procedure is the

Arno1d‘and Ariold (1970) which 1s discussed by

82
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TV Additional Applications

" Several other applications of latent’ c]ass models have been exam-
1ned in the literature which are only ment1oned here. These include a
tailored testing procedure (Wi]cox, in press b) that might be used
when computerized test1ng is feasible. Knapp (1977) discusses a
a re11ab111ty coeff1c1ent that is based on a 1atent state point of v1ew,i
and Emrick (1971) describes how these mode]s might be used to determine

:the pass1ng score of a criterion-referenced test. Emrick S estimation .

,_

procedure was shown to be 1ncorrect (Niicox & Harris, 1977), but this'"“”

problem is easi]y corrected u51ng one of the estimation procedures al-

";ready described. A c]osed form estimate of the parameters\in Emrick’s

modei is given by‘van der Linden (1981),

6. Further Comments on How Latent Class and Latent Trait’

Models are Re]ated”

i In the three parameter 1atent trait mode] given by equation (2 4)”

- the parameter ¢ is sometimes ca]]ed a guess1ng parameter.. Hopeful]y by

th1S point 1t can be seen that this parameter has nothing to do with the

' notion of guessing used in 1atent class mode]s The parameter c is just

1im p(e). Thus, c refers to the probabi]ity of a correct response to
g :

- an 1tem for a particu]ar type of examinee, name]y, examinees for’ whom ]

s small For latent c]ass mode]s guessing s defined in terms of a

specific item and a popu]ation of examinees who do not know,or'a spec1f1¢
: examiIee and a domain of items that he/she does not khow--this 1s differ

nt from the population of examinees having [ sma]] Suppose for examp]t
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p(e) =%. Using the. item sampling interpretation of p(e), this means
“that among all the items having item parameters a, b, and c, the prob-
. abiiity’g;fggiorrect response is.% for an ekaminee with’abiiity level -

0. But.this suggests that the examinee does not khowﬁéii of these items,

in which case some answers will be correct by chance But hoﬁ'does the
'parameter c correct this difficulty? The _answer is’ that 1t doesn t deal

 with this prob]em at all. . . ;' i

Some writers have 1nterpreted p(e) in (2 4) as the probability of know-}
‘ 1ng an item which suggests that latent trait mode]s might be related to
latent c]ass mode]s, but- no simple re]ationship has been established when |
" errors-at the- 1tem 1eve] exist because thesmodels measure different things.,
In fact, if this 1nterpretation is used a]] estimates of the 1tem para-}.
. meters in (2 4) break down when multiple—choice items are—used. To see v
‘_th1S, note that in order to estimate a, b, and 8, it wouid be necessary to
determine which items (or how many 1tems) an examinee knows. But what is i
' observed is only which items were answered correct]y. In some cases perhaps
3 this is not a serious prob]em--it seems that more work is needed in this_ '
- area. Mislevy and Bock (1982), as well as Nainer and Wright (1980) have
'5given some attention to the prob]em of estimating latent‘trait parameters/

1in the presence of guessing However, the model they used for guessing-f

behav1or is different from the notion of: guessing in 1atent c]ass models. }\_

3 Lot .
) o RN
G e E

To further differentiate the two models, perhaps a more general

ftheoretical description of true score modeis uil] heipﬂ 5Sirotnik and

Hilcox (1982) point out that certain notions in Torgerson (1958) can be

'used to describe e mode] that contains as. a speciai case all the true

fscore models described~in this paper Their deveiopments are brief1y

'f'smnnarized here
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Let ¢ be some “ability" parameter that characterizes an. examinee
For a randomly samp]ed examinee let p1( p) be the ‘conditional probability
of a correct response ‘to the ith item on an n- 1tem test given that the
examinee has ability . Let Py () be the conditional probability Lgiven w);
.of x correct responses, and 1et g(w) be, the probability den51ty function
of .y for the population of examinees. Then ~ '
' -y = 7 pyle)g(v)dy

is- the probability -of a correct response to the 1th 1tem for a random]y y
samp]ed exaninee | \ A : |

A ba51c prob]em is determining what ¢ should represent For a ]atent

CIass model, the simplest case is for a single examinee and a 51ngle item

’kin which case the only two p0551b1e va]ues for ¢ are 1 (the examinee knows)

~.

or 0. (the examinee does. not know) . Then g(v) .is “the- proportion of. examinees
who know. For the AUC mode] the p0551b]e va]ues of ¢ are a\i,..;,t—l and

: P; (v)= (t v) fora random]y samp]ed examinee Note that for these mode]s,
: an examinee s ability 1s defined in terms of a speC1f1c item, and this can
be used as a basis for defining ability in terms of the number of itemst
known on an n ~item test or the proportion of 1tems known in an 1tem domain,
For 1atent trait models 12 does not 1nd1cate what an examinee knows, but

| _'rather, 1t determines the probabilitx of knowing when there are no errors
.at- the 1tem level such as guessing Another important point is that to

 say the item parameter c is the same as the gue551ng parameter in the AUC'

. )

‘ mode] is-to somehow equate c to p1(w) given that ¢<t-1

For an item samp]ing mode] based on.a 1atent class mode], y.is the

o 'pr0portion of jtems in an item domain that an. examinee knows, 0<w<1 and

(")w (1- $)" . In latent trait mode]s, the probabd”ity of a correct
_response to the ith item depends on a, b, and c. Thus, as previously '

'pointeffout, for 1atent trait mode]s, pi (w) Eabc(w)’ where E abe A
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means expectat1on with reSpect to a, b and c. Also -

p. = ffffp (w)g(w a,b c) dw da db, dc

i . ,
' where g(o, a, b,c) is the JOTnt dens1ty of w, a, b and c.

P
7.'.Conc]uding'Remarks f%e -

. As was stressed at the begann1ng of the paper, 1t'iS'not,being argued.

that the other approaches to measurement (c]ass1ca1 test theory, Tatent -
tra1tsmode]s, and 1tem samp11ng mode]s) be abandoned or that they are .
V1ntr1ns1ca11y bad in any sense. It 'is be1ng argued though that carefu]
exam1nat1on of the goal of a tesb should be made before a true score '
model is chosen. Genera]]y different models g1ve d1fferent so]ut1ons to
the same prob]em For example, when determ1n1ng how many distractors .
'shou]d be used, 1atent tra1t mode]s can be app11ed (Lord 1980), but the"

1 criterion used 1s d1fferent from the one u57h 1n Iatent state’ models |

1 / - : .

/
c Ly

Another reason for choosing a mode] carefu]]y 1s that some,wr1ters |
have argued that latent trait mode]s do. not address many of the measure—v
'7ment prob]ems that are current]y of interest (e. g.. Baker; 1977) The .
pr1mary po1nt 1n this paper is that 1atent c]ass mode]s give the test
constructor ways of examin1ng measurement prob]ems that did not exist a
short wh11e ago By using‘]atent class mode]s 1n conjunction with otherr’
~true score mode]s, tests can be ana]yzed 1n a more effeetive manner than'r"

= ‘. . . N » };

ever before

: i
A
’ i

{
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Strong True-Score Theory

n mental test theoryla general goal is_to use obser-
ved test ... <; v make .infercnces ~bout an unknown’param-
eter 6 that represents an ekamjnee's ability in a certainn
area such as arithmetic_reasoning,'vocabulary, spatial
ability, etc. The.parameter~e is. frequently called an ex-
aminee's true,score. ‘There arewseveral types of true

'scores (3], but because of space restriction“the differences
‘among them are not discussed. True score models.are just
probability models that yield methods for estimating [
or making inferences about the characteristics of a test

-»The term strong true-score theory was introduced by Lord
[2] to make a distinction between "weak“ theories that can
not _be contradicted by data, and "strong" theories where
'assumptions are made about the distribution of observed

_ test scores Strictly speaking latent trait- models (also
known as jtem response theories) fall within th1s defini-

. tion, but - the term strong true-score model is usually re-‘

' served for models based on the binom1al probability function
| or some related distribution Apparently this is because
 the main focus of Lord's paper was a- model based on the

binomial probability function _ '

J/f'; Consider a. s1ngle examinee responding to n dichoto-

mously'scored items As Just indicated the best known
.strong true-score model assumes that the probability of k

-‘correct response5is given by
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fxlo=MeX (o RO
In add1t1on to Spec1fy1ng a probab111ty funct1on for Xy an
.examinee S observed score, strong true-score. mode1s typf§
..ca11y spec1fy a particular family of d1str1but1ons for o :~
over the popu1ation of exam1nees When (1) is assumed'theé
family of beta dens1ties is commonly used where g(e), the :
propab111ty densmty funct1on of 8, is given- by

glo) = orirte) r'1(1 1 A £

and where r, $>0 are unknown parameters Estimates.of the
,parameters r and s are eas11y obtained with the method of
.moments [6] and. maximum 11ke1ihood estimates are available
from [1]. Basica11y the beta binom1a1 mode] fa11s within
the realm of empir1ca1 Bayesian techniques, as do most
strong true-score mode1s The beta-binomiaivmodei freguent-
1y gives a good fit to data and it prov1des a so]ution to
many measurement prob1ems [6] Inc1uded are methods ef
Vequating tests and methods of est1mating test accuracy andu
relability. G e e
| ; Severa1 objections have been raised against the beta- »
binomia] mode1, but from [6] the on1y obJection that seems"”'f “
) to have practica1 importance is that the mode1 1gnores Q,f

V guessing Here a correct guess refers to the event of a .

',.correct response to avrandom]y samp1ed item that the exam-

jinee does notlknow.' For a strong true-score mode1 where a_
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correct guess .s definkd in terms of random]y samp]ed exank
inees (and'where 1tems§§re,fixed), see [12] ‘
Suppose every 1tem has t a]ternatives, and for a spe-
_c1f1c examinee let Z be the probabllity of know1ng a rand-
om]y'samp]e item. Morrison and Brockway [4] assumed random
guessing in which case - ' ‘
= ;+t'1(1.;) Sy
".and the‘density oi 8 is. ’_. ' ‘T* B
o gle)s ~t Do), tlea.
Uhfortunate]y it appears that the random guess1ng assump-
tion is unsatisfactory The on]y mode]l . that has given o
good results is -one proposed by Ni]cox [8 9] that is based
on an answer-unti] ‘correct scor1ng procedure“and the assump-_
tion that-an examinee 3 guess1ng ability is a monotonic ‘
function of 8. By an answer-unoi]-correct scoring‘procedure
is meant that an examinee chooses responses to azmuTtiplee.
choice'test item until the correct/aiternative is chosen
These tests are usually administered by having an examinee
erase a shield on especia]]y designed answer sheet§ Under =
i‘the shie]dvis a 1etter indicating whether the correct
answer was chosen If-not another shie]d is erased and -
'the process continues unti] the c0rrect a]ternative is se-

]ected S o . ls;;_.ax

s

Let ;1 be the probabi]ity ‘that an examinee'can elimin-
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Rand R. Wilcox

ate i d1stractors from a random]y samp]ed 1tem, 1—0 ..., 7,
t-1. " It is assumed that when ian examinee does not know,;'
there :s at least one d1strartor that can not be elim1nated,7-
~through part1a] information,. and $0 Zgo1 = Te It is a]so |

assumed that an exam1nee e]1m1nates as many d1stractors as

N

| poss1b1e, and then guesses at random from amona the a]ter-}”-°

 and that T
: 0,

[

natives that yvemain. For emp1r1ca] ev1dence.1n.support of .
th1s ]ast assumpt1on, see [11]. If 85 is the probab1].ty

of a correct answer on the 1th try of a randomly samp]ed

1tem, then < /
ted
8; = g:/ (t-3)
. 1 §=O J ?

'and 50 the CJ s can be estimated. Z'If‘x is the number of

|

items requ1r1ng i attempts,'1t 1s assumed that the x s
have-a mu1t1nom1a] probabi]ity function. It's a]so

'acsumed that 91 has a beta dens1ty with parameters r and s,‘
{Z‘ . 1]

E(lelellcfo h(u)du+t1 AR €

(QM

where c is an unknown parameter, and h@u) is a]so a. beta

density but with parameters a and b The mode1 1mp|1es that o

o205 t*.-"- R N O B

. and so the lower ]imit for the 1ntegra1 in (3) shou]d be -

1, but this modification has not yet been applied to real

data Equation (3) *s based on the aesump+ion that thc more
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[ —
£

~1tems an examinee knows, the higher the probabiiity will be
that an examinee will give a correct _guess to an 1tem that
is not known The parameters a, b and c. are currentiy es- .
-.timated using what is ba51ca1]y the method of moments. " The

details are too 1engthy to report here; the 1nterested

-3
Py

'reader is referred to [8]. , o é/),/( ~
- N .
As a final mote, there are now exten51o£ of strong

.4,~true-score models based on ciosed sequentiai sampiing tet

niques which might be usefui in cOfJ\terized testin-.

'ciosed sequentiai sampling 1s meant that items are

» A

samp]ed and administered until some cr1terion is met.  The
_criterion actuaiiy used will depend on the purpose of the

Con51der, for exampie, a cr1terion referenced test

where the goai is to determine whether 9>60 where 60 is a f
known constant Suppose 8204 is decided jf and oniy if
X>C, where c (a positive integer) it some. known passing _
score. Given that e>e0 (or ‘that e<eo), the probabiiity ‘of '\p
a correct dec151on is avaiiabie 1mmediate1y (given e) if. '
the binomiai modei 1s assumed For related resuits see.[l&]
- Suppose instead thatditems are randomiy samp]ed untii
'gtan examinee gets c items’correct or m-n-c+1 1tems wrong

'e,Let x(y) be the number pf correct (incorrect) responses when

- “the sampiing of\items terminates._ The jointgfrobabiiity \;’ o

.83

s’
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function of x and y is

<

flxyle) = L 2L ¥ (1-0),

where %= céand 0<y<m-1 or where y=m &nd O<xzc-1, and L=m

if y—m,otherw1seL- | W11cox (71 showed that the probab1]- )
| ity of a correct dec1s1on under the c]osed sequent1a] pro-
‘cedure is exactly the same as -it is under the b1nom1a]
mode] buttthe expected number of items is a]ways less. .
For resu]ts on estimating 6 under the c]osed sequent1a]
procedure, see [13] For extens1ons to the mu]t1var1ate

4case, including an app]1cat1on to answer-unt1] correct

tests, see [14, 15].
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CABSTRACT =

‘ . A s1mp1e approx1mat1on of a mu1t1var1ate d1str1but1on is suggested
that may be usefu] in certain situat1ons Compar1sonsvw1th severa]
other approx1mat1ons suggest that the new approx1mat1on nearly a]ways
_gives better rnsuTts. In some cases the improvement is minimal, but

for some s1tuat1ons substant1a11y better results are obta1ned

T~
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| Letglxll,.‘..,Xk be’k random.variables with joint densityif(xlg...,xk),
.and let . - e o ’ : |
. PePr(Xysh - o aX<h, ) R R RN
" of courseirimany situations (1.1) must be evaluated,.butffrequently.ap?f
_”prOximationsﬂare poor In some cases P can be evaluated exactly using
quadrature techniques, but thS can be prohibitively expen51ve, and the
'necessary computer- programming does” not always exist The goal in this o
paper 1s to suggest a 51mple approx1mation of P ‘that appears to be useful
~in.various situations, and which appears to compare favorably to some
other approximat;pns that have been used in the literature.

‘ The proposed approximation is base on a second order Bahadur approx—i’
“imation of a multinomial distribution.‘ he.motivation for this approxi- ‘
~mation stems from a recent investigatio (Wilcox; 1983) which in-

'cluded, among other tnings, an approximation of Pr(E yi>m), where the _
'yi s are binary random variables A second order Bahadur approximation
' proved to be more. accurate than expected and this led to the approximation

and comparisons made here Another motivation for this approximation

/

stems from results reported by McFadden (1955) where it was suggested -
that a special case of the approximation used here will frequently give
good results for k=4, ' | Y
| In section 3 the accuracy of the approximation 15 investigafed by
('applying it to some distributions where R is known exactly for certain
speC1al cases. The results suggest that the approx1nation nearly always :

[ 3

Vimproves upon all four approximations of the multivariate t distribution

Ral
{
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a
,proposed by Dunnett and Sobel (1955) In a few instances the improvement'
s eubstant1a1. it also- appears to - improve upon an approx1mat1on of the
multivariate normal distribution proposed by 01kin, Sobel, and Tong (1976).
.F1na]]y, the approx1mation is compared to some percentage po1nts tab]ed
by Dudewicz and palal (1975), and found to give good results in most cases
as long as k is not too 1arge. Compared to the Bonferroni 1nequa]1ty,

“there are again s1tuat10ns where thereis cons1derab]e 1mprovement

2. The Approximat{on' | ‘ _
Let y-(yl, ,yk) be a randofi vector . where y.=0 or 1 (1 1,.. ,k),

-y

- and let,p(yl, . ,yk) be the corresponding probability funct1on -Bahadur

(1961) showed_that p(yls,..,yk) could be wr1tten as e

¢

ply) = py{ydaly)

.
where' .

, k y : , .
=1 . 1 (1‘°1)1-yi” L | - : L
ap® Elyg)

g(y) = 1+ ‘[Jrijzi 5 1 ;(m 1jmzizJ :.... +r,
(Yi - o)/ L 1‘“1)3
'rijaE(zin ; ) o ]

rijng(zizjzm) ‘ B .‘__.' .

TNt .
LI

r..

: .12;.;n‘5(z z2“‘z )
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An mth order approximation of
_m terms in the expression for

‘proximation is

n.(y) [1+Y r;.2.2.1
CPL R G
Define
Yy =

0, otherWise

: Then an approximation of P 1s

3
AT Pr(X1<h 1+§
Ad=1 <J

“In many practica] situations Pr(X1<h ) (i=

p(y) is obtained by retaining the first
gly).

7.

A ' -

JUSt

x <h,)- Pr(X1<h )Pr(ijl
sh, Pﬂxjamj)

]

-

In particular, a second.order ap-
@1

(2.2)

(2.9)

.,k) have a connmn va]ue v,

and Pr(X <h1,xj<hj) have a common value U for all 1#3, in which case j‘
(2.3) -becomes . | : . o
' \ . nz . .-2 ’

vk B g

Bahadur (1961) noted that the approximation (2.1) will be a probability

function if 1+§.r$jzizjz0,;bux that qthérwise some of its values.will

. be negative.

Ly
. . £ e
3 IR

9

This pfob]gﬁ neVer'arosé.in the cases considered here, -



31 * The Multivariate t Distributions .
"SupposeEthe joint'probabi]ity density-function of Xys..osXy is multi-

p variate normal with corre]ationlnatrix {p1 }, mean vector 0 and common vari-
. 2 . o . d

. ] I} SGiiare W S . PR _..; - ; -
ance o°. and n3/¢” has hi-sguare distribution i idependent 0

e
ﬁ-

. IV‘I

with v degrees .o freedom.. Then the joint density'of T;2X;/S (i=l.,,,.k){5

multivariate t, and the7jointjpdff(probability density function) is

- o e wtk)/2
i/ 2r(v/2) |

-

(3.1)

where A is the determinant of the positive_definite'matrix {a.-}={'o1-\]-}"1

This d1$tF1but10n arises in rank1ng and se]ection (Bechhofer, Dunnett
and Sobel, 1954) where the ‘goal is to determine which of k+1 normal d1s-
tributions has the largest mepn' Another application was discussed by
Dunnett (1955) where the goa] is to comparu the mean of k norma] d1str1-
butions to a cont:o] (See, a]so Gupta and Sobel, 1958 ) - Kr1shna1ah s
_(1965) used the distribution to ‘make multip]e comparisons in: the~mu]t1-
variate analysis of variance Properties of this distribution are summar;'
.iZed by Johnson and- Kotz (1972) and Gupta (]963) 7u47~"

For k—2 exact expressions for (3. 1) are avai]able (Dunnett and Sobe],
1954), but for k>2 approximations must be used except for certain speC1a]
- cases where exact resu]ts have been tabulated An approximation was sug- °
gested by John (1961), but unfortunately it is comp]icated and some “_v

R

quadrature is required. Four approximations (]ower bounds) were proposed




by Dunnett and Sobel-(1955). These were

o

1 -'z Pr(T;>hy) o I € )
k ‘ )
I Pr(T,<hs) (3.3)
i=1
| k2 e
¥=1 Pr(T21_1<h21_1’Pr(Tzithi), k even. o (3.4a)
“(k-1)/2 k o S .
_{Pr (Ty<h, To<h) /2 - | o © . (3.5)
The ]ast lower bound assumes h1 h2 —hk=h,'say, h:O, and pijfkikj N

for séme-constantS'A. where 0<Ai<1 (i=1,.;;,k). Efbressionj(3.4) also

-
e
[t

assumes that s j-Aixj and that h >0 (i=1,.. k). ,For Py5=Ps Tong (1970)

" gives the Tower bound

(T <h,.""l"2<h)-_(pr( <h)) 2k/2 . -

_but he shows that this bound 1s not as sharp as (3. 5)

<...<

Dunnett and Sobel cdmpared the1r ]ower bounds to the actua] P va]ues

L

»'for the 1mportant spec1a1 case p’% and where the h 's have a common valuef;

" h. For v-w and (1. 1) close to Qne, tre1r compar1sons suggest that the :

]ower bounds' are reasonably accurate for k 3, but for k-9 the accuracy '

jdiminishes cons1derab1y v They a]so exam1ned\\he case v-5 For k=3 the l.

S~ N S ~- T

approx1mat.ons were tolerable, but for k—9 ‘the approx1mations were poor
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The approximation (3 5) consistent]y gave the most accurate results.

Tab]e 1 shows the exact va]ue of h so that P=.99, . .75, .50 for_'

'k=3.9. These values were. taken'from Dunnett and Sobel (1955). Included

As can be sden, (2.4) nearly’ always improves upon both (3.2). and (3.5)
without making any assumotioﬁs about the structure of the corre]ation -
matrix {gij} For P c]ose to one there is 1ittle improvement over the

other approximations primari]y hecause (3.2) and (3.4) give fair]y ac-

-curate results. As F decreases. though, (2. 4) begins to give reasonab]y

more accurate resu]ts

-

Tab]e 2 shows the approximation of P for v=5, k=3 9 and various 7

va]ues of h. Again (2 4) nearly" a]ways improves upon (3 2) and (3.5},

~ but unfortunate]y all three approximations are poor for kn9 unless P is

ciose to one. A1so observe that (2 4) is substantia]ly more accurate

© for k=3 and- Pt 5. S ' S o:
3.2 Approximating a Distribution Occurring in Ranking and Selection -
Let T (isl. ,..p+1) be n+1 independent random variab]es all havino
~ a Student's t distribution with v degrees of freedom. and ]et H1=T1-Tk+if
.(itl. ..sk). The joint distribution of the H1 s arises in the ranking

and se]ection problem considered by Dudewicz and Dalai (1975) Tab]e 3

) shows the exact value of p (which was taken from the table in Dudewicz |

: ment is substantia]

and” Da]a]) and the value of (2.4) for k=3,5; h=1,2,4 and Va1, 14 29. -Theu
' vaive of (2 4) was determined using the tab]e in Dudewicz and . Dala] As
‘ '_'can be seen. the approximation does not a]ways work well when v-1 ‘but

otherwise it gives - reasonably accurate resu]ts. Table 3 a]so in\:udes R

as 1s evident (2 4) gives better resu]ts and in most cases the improve--

W g

i~

_1in the table are the values of h determined withi (3. 2) and (3.5) and'(2.4).

-an approximation based on the Bonferroni inequality-P>1-zPr(N1>h } but N

4
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3.3 Estimating the Probability of a Correct Se]ection in Ranking and

Se]ection

For the final comparison, let X,,. Xk+1 be k+1 1ndependent standard .
normal random variables Estimating the probability of a correct se]ection
in- ranking and selection problems requires evaluating ' _

IR Kt B Kggh) »" (3.6)
Evaluating (3.6) a]so p]ays a centrai ro]e in Tong (1978) |
Otkin, Sobe] and Tong (1976) suggest a family of approximations of

(3. 6) that are,pased on maJorization To i]]usxrate the accuracy of their

"approximation they consider k=5, h1 =3.2, h2J2 7, h3=2 5, h4 1.9, h5 =1, 7.

. The exact’ va]ue of (3.6)is 8016 The c]osest approximation (in’ abso]ute'
s;'value)_based on their approach is .7802. If instead (2.4) 1is used, we | »
get“ 8171. 'bbviously this one case is not a compel]ing reason to,abandon_
the approximation proposed by O1kin, Sobel and .Tong. It is difficu]f to_
make extensive comparisons because the quantity approximated by Olkan et a]

e 15 genera]ly unknown The point is that we have cne more gxamp]e where

Henery (1981) suggests another approximation of (3. 6), which we

*(2 4) gives good resu]ts

. compared to some of the exact va]ues in Bechhofer (1954) -For k=3 it
.‘\worked reasonab]y well for P<.8, butunfortunate]y for P> 8 1t gave very
| poor’ (\su1ts and so it was not considered further. (cf Sathe & Lingras, g }
1980; Ric et al., 1979). .. *

‘Summary and Concluding Remarks. ‘l‘, | SNy
In some instanc\s the approximation (2 3) will give veny accurate
resu]ts, but as was ifiustrated this 1is not: always the case. However |

it seems to usua11y give\\\reasonabie approximation in most situations

C

when k is not too 1arg

Moreover, it is- easy to use when the exact dis-.




? N
. )

tributioh’i? known ior k=2, and s0 itlmay'be useful'in certain'situations
More 1mportant]y, (2 3 appears to compare 1ev1rab]y to various approxi-
mation that have been: proposed in the past and it can give con51derab1y
.better»resu]ts when P is not too. c]ose to one. . It is interesting to-.
\note that the Bonferroni inequality i$ known to GSuailv give(accurate ',
resu]ts when P is. c]ose to one; (2 4) genera]ly givés an even better ap-
proximation in these cases, but the improJement is not overly striking
For distributions re]ated to Studnnt st distribution, the compari-
ﬁc‘.sons made 1n Tables 1 and 2 suggest that {(2.4) works: to]erab]y well, for e
k=5 and v “the degrees of freedom ‘as sma]'l as 14. For k=3, (2. 4) seems
to evengwork reasonabTy wall for v=58. However, for k-9 all of the
approximations considered here appear to be high]y 1naccurate except for"'

SR N
a few cases where P is c]ose to one '

Fina]]y, no anaiytic resu]ts were given On the accuracy of (2 31,
but the only ana]ytic result conqerning the other approximations is that
’they provide bounds for P. 1In some instances ‘thase bounds can be extreme]y

inaccurate, in which case (2.3) hﬁght be con51dered In fact in terms

- of obtaining accurate approximations the on]y motivation for preferring

. oot . ..
existing bounds is that they were 1nvented first( . R
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TABLE 1 )
Comparisons for the MuTtivar*‘éaté Normal Case of: Exact and -
Approximate”.Percerit_-age -Poihts, h, for §e1 ect_ied. Values of P
) 4 ) ~. o e
. k=3 2 | : k=9 :
P (3.2) (3.4) (2.4) Exact (3?2)'  (3.4) (2.4) Exact’
99 271 2.70 s 268 | 3.06  3.05 2,97 3.00 .
.85 213 2.09 . 2.05 2.06 ‘2.5 " 2.51 _',2.25 2.40
J5 . 1.38 1.g§ | 1'16-, ‘1.19 - %ggl .1.82 130 | 1.60
.50 -.97 .70 .56 .59 | 1.9  1.38. .85 " 1.04
| | . : ]
| © TABLE 2-
Comparisons for fhé Mu]tivari‘a‘tea t of Approximate and ’
Exact P values for Se1':ar<‘:ted Values :)f h, _v¥5
\ - : \ y
N k=3 . ’
ﬂ\- ' - (3.2) (2.8 .‘ (2.4)  Exact )
421 .987 - . .989 °  .990 .99
o 269 L9031 944 \/, 956 1 .95
o sz 700 .75
62 - 139 .45 515 .50
- o k=9 , :
. 5:03 987 .989 998 - .99
3.30 '45.903 A>T -7 A .95
el a5 57 a4 . 75
To1100 0 - .269 - .655 - .50 e
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- o TABLE 3
b
Approx1mat1ons of Values Tabulated by
Dudew1cz and Da1a1
k=3 © k5
Bonferroni (2.4) . Exact | Bonferroni (2.4) Exact
h - | s
A LLA )
, 11 0 L4822 .402 0 325 .285
' 14 1 ° .249  .852 537 0 483 431
29 .1 265 559 . .545 0 491 440 -
T2 250 572 .541 0 .519 .414
ra L . .
14 2 724 .806 ¢  .798 540 776 726
20 2 .745  .818 .81l | .575  .788 - .743
1 4 .57 . .43 . .11 |G .262 750 .605
14 4 .83  .985 - .98%5 | _g71.  .980 = .977
%8s » 0
29 4 .989 . . ..990 .990 .981 .986 ° ' .984
- C | ,
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o e ’ ABSTRACT

Let p be the proportion of’ 1tems w1th1n an item doma1n that an ex-
© aminee wou]d answer correct]y if every item were attempted This brief’

note provides unb1ased est1mates of pt for any 1nteger t, when a closed

J’o
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v

_séquential testing “procedure ‘is used. s
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Consider'a single -examinee, a domain of items, and let,'p be the

examjnee's domain score or true score. sThat is. p is the proport1on of
T , I Sy
items. in the domain of items that the'examinee would get correct if every

~item were attempted. In some cases it is assumed that z, the'number cor-

rect observed score, has a binomial probab1]1ty funct1on, and that for -

p i

the popu]at1on of exam1nees "the d1str1but1on of p belongs to the beta
family. Th1s beta-b1n0m1a1 model has befn used to so]ve many measurement

L.,-——-—-/
prob]ems (Lord 1965; Lord & NOV1Ck 1968; Wilcox,’ 1981a)

A .

Let Po be a known constant, 0<p0<1 In cr1ter1on referenced test1ng

akcommon goal is to determ1ne for every exam1nee whether p>p0 Usually |
t

is is done by adm1n1ster1ng n items to every exam1nee and dec1d1ng

o

P2Pg if and only if z/n>p0 Wilcox (1981b) po1nted out that 1t is poss1b]e )

to 1mprove un1form]y on th1s procedure when computer1zed test1ng 1s fea-

A}

. s1bJe The procedure is based on a.closed sequent1a1 samp]1ng scheme

: Th1s means that 1tems are samp]ed and admin1stered one at a time untfl

-4

an examinee gets m 1tems right or M 1tem5\wrong In N1]cox (1981b) m was

set equa] to the sma]]est 1nteger z such that z/n>p0, and then M was set

‘x
\

"equa] to n-m+l. )

The purpose of . th1s br1ef note is to prov1de unb1ased estimates q{

pt for any integer t, 1<t<m It is noted that,for t 1, an unbiased es-
~ stimate is easfly der1ved from“resu]ts 1n61rshicket a]\\(1946) \';
- : After samp]1ng term1nates, let x be the number of items the\exam1ne%
answers correct]y, and 1et y be the number for wh1ch an 1ncorrect responﬂ"é*

A\l
A

is g1ven * The unbiased est1mate of pt B R '




where M+x t-1 0, 1f x<t.
~x-t - -

4 2

s ' ) { :
To establish the above result, f1rst it is no/egj?hqt from Wilcox (1981b),

/

the Jq1nt probability funct1on,of x and y is.

m-1

. f(X,Y|P) . g _
- v M - + X M .
! [1 M- i ‘X] p (l'p) 9 '!,f;,y:M- : . v

e

Cn -1+ yjh pm(l-p)y,iif_x m

- - - — T I -

Proceed1ng as is done for the b1nom1a1 case, it fo]]ows that E(p ) p

-

Henceforth pt will ‘be written as p when t 1. The max1mum 11ke11hood

- est1mate of p 1s p -x/(x+y) To gain some 1ns1ght into how p and p pompare,
selected va]ues of E(p p) and £(p p) _were. computed, and the resu]ts are

reported 1n Table 1. As-can bevseen, p generally gives more accunate re-

sults than p .

_ Two s1tuat1ens are briefly noted where unb1ased e§t1mates of pt are
important. The first 1s‘est1mat1ng the- true score distribution. Suppose
‘that for the popa]at1on of exam1nees, p has a.beta density g1ven by

ap) = r(res)/atr) K DD"H(1-p) - e

A where r,s>0 are unknown paramefers To est1mate r. and S, 1et p and p
-3

be the unb1ased est1mate of P; and- pf, respect1ve1y, for the 1th randomly :
samp]ed examinee, 1-1 ool Proceed1ng as in Gr1ff1n and Krutdhkoff S

(1971), it follows that f_' o | e i.‘ R t__ D

. - - LA
~

u = Nl Zp1.

»
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can be d§ed‘to e;tiﬁ;te E(?t), where:the,exp?ctat€on is taken with re-
spéct to the'betaidensity. Thus, r and s cénibe estimated.as described
. in Wilcox (1981a). | ,,
) The seg?hd\i]]ustration has to do with fhéxoptimal 1inear estimator
of p. Because p is unbiased, the linear estimate, p, that minimizes
2

X is the variance of

~ 2 . . v 2, 20, - , ,
»EPE(p-p) is given by p—(qp/ox)(p-u1)+u1 where o v
y . . e ~ 2
the marginal distribution of x, op =

| koff, 1971). From the results given above o> arid u) can be &stinated
'+ yielding an estimate of p (cf. Wilcox, 1978). . "
v . . , »' .o l '
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wpmite and y =E(p%) (Griffin & Krutch-.
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VALUE OF E(p-p)? AND E(p_-p)° .
v q
come M . ™S w23 b e 5
5. 5 .0168 - .0276 .0338  .0368 .0376
| : 0126 © .0236  .0350  .0848  .0489
5- 10 .0083  .0143 ' .0198 - .0256  .0307 -
| . ~ .0076  .0170-  .0271  .0326 ' .0334
5 15 .0056 .0109  .0175 . .0246  .0304 "
. .0059 . .0154 .0236  .0282  .0308
5 " 20 .0044  .0098 ° .0171  .0245  .0304
- .0053  .0144 . .0216  .0270  .0305
“10 10 vt .0083  .0133 0157 L0162,  .0162- °
a_— .0071  .0120- - .0155 ¢ .0190°  .0208
10 15° " .0085  .0088 . .0106  .0122  .0141 -
. .0050  .0084  .0122.  .0157  .0163
*The first entry in every cell ié.E(ﬁ-pSZ, and the second entry is
. ~ 2 . . ) ] - . T - -
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